### LABORATORIO DE INGENIERÍA MECÁNICA ASISTIDA POR COMPUTADORA

### **UNIGRAPHICS**

#### Módulo de maquinado

Objetivo: Realizar una operación de maquinado utilizando el módulo de manufactura de Unigraphics V18.

El ejercicio que se presenta a continuación permitirá que el alumno adquiera los conocimientos básicos para realizar una operación de maquinado con fresa en una pieza simple.

Iniciaremos abriendo una pieza ya creada en el archivo maquinado.prt. Es importante dejar la pieza en la posición que aparece y no rotarla.

A continuación cargaremos el modulo de manufactura en Application>Manufacturing...

Se desplegará la ventana de la izquierda. En ésta, elegiremos el tipo de máquina herramienta que será utilizada para el trabajo. En este caso utilizaremos una fresa (mill). Entonces elegimos **mill\_planar>mill\_planar>Initialize** 

| cam_general<br>lathe<br>lathe_mill              | <b>^</b> |
|-------------------------------------------------|----------|
| nil_multi-axis                                  |          |
| nill_planar<br>nill_planar_hsm<br>shops_diemold |          |
| Browse                                          |          |
| AM Setup:                                       |          |
| nill planar<br>drill                            |          |
|                                                 |          |

A continuación aparecerá una ventana en donde tendremos que especificar el tipo de operación a realizar. Se elige el tercer ícono de la primera fila (planar mill). Este es la operación que utilizaremos para la fabricación de nuestra pieza. **Planar mill>OK** 





Aparece la siguiente ventana. En esta tendremos que introducir los parámetros necesarios para realizar la operación. Cada uno de los parámetros necesarios será explicado más adelante. Pero primero debemos definir el origen de la máquina. Para esto iremos a la barra de herramientas y buscamos el icono de **Create Geometry** 



# CreateGeometry>MCS>OK

Aparece la ventana para definir el sistema de coordenadas de la máquina (Machine Coordinate System)

| MCS                                  | MCS MC                    |              |
|--------------------------------------|---------------------------|--------------|
| Link MCS/I                           | RCS MCS (<br>Save MCS     | Drigin<br>5  |
| Fixture Offsel                       | :                         |              |
| Clearance                            | Lower                     | r Limit      |
| Al                                   | l selected i              | tems         |
| Dicplay                              | Specify                   | Info         |
| Dispidy                              | - spoce y                 |              |
| Save Laye                            | Layout/Lay                | /er          |
| Save Laye<br>Layout Name             | Layout/Lay<br>er Settings | /er          |
| Save Laye<br>Layout Name<br>MCS_2_L3 | Layout/Lay<br>r Settings  | /er<br>Layer |

Seleccionamos el icono de **MCS Origin** y aparecerá la ventana Point Constructor. Elegiremos como origen de la máquina la esquina inferior del rectángulo que rodea a la pieza como se muestra en la imagen de la siguiente página. El rectángulo representa el material en bruto que será cortado.



Ahora que ya hemos puesto el origen de la máquina necesitamos enderezarlo. El eje ZM indica la dirección en la que está el cabezal de la máquina. En este caso la máquina descenderá desde la parte superior de la pantalla para poder maquinar todos los huecos.

| MCS                                                | Para rotar el sistema elegimos el icono o aparece la siguiente ventana. |
|----------------------------------------------------|-------------------------------------------------------------------------|
| Link MCS/RCS MCS Rotate                            | Rotate MCS about                                                        |
| Fixture Offset                                     | C - ZM Axis: YM> XM<br>C + XM Axis: YM> ZM<br>C - XM Axis: ZM> YM       |
| All selected items Display Specify Info            | <ul> <li>+ YM Axis: ZM&gt; XM</li> <li>- YM Axis: XM&gt; ZM</li> </ul>  |
| Layout/Layer<br>Save Layer Settings<br>Layout Name | Angle 90.0000<br>OK Apply Cancel                                        |
| MCS_2_LAY1 Save Layout/Layer                       | Seleccionamos +YM Axis>Apply>OK                                         |
| OK Back Cancel                                     | ОК                                                                      |

icono de MCS Rotate y



Ahora que ya tenemos definido el sistema de coordenadas, es necesario introducir los demás parámetros. En la ventana de **PLANAR\_MILL**, debajo de donde dice Geometry aparecen 5 iconos: **Part**, **Boundaries, Check, Trim** y **Floor**.

**Part>Select** y seleccionamos las dos superficies de la pieza como se muestra en la imagen y damos **OK**.



**Boundaries>Select** y se seleccionan las cuatro líneas que delimitan al rectángulo y damos **OK**. Recordemos que el rectángulo representa el material en bruto que será cortado para obtener la pieza.



**Floor>Select** y rotamos la pieza para poder seleccionar la parte inferior como se muestra en la imagen, damos **OK** y regresamos la pieza a su posición original.



Ahora seleccionaremos el tipo de herramienta a utilizar. En la parte superior de la ventana de **PLANAR\_MILL** seleccionamos Tool: Mill y damos Select. A continuación aparece una ventana donde se nos pregunta que tipo de herramienta. **Tool>Mill>New**.

Aparece otra ventana que nos permite seleccionar el tipo de fresa para el trabajo. En este caso elegiremos el primer ícono y damos **OK**.

| Туре        | į       | mill_planar 🔤 |
|-------------|---------|---------------|
| 1           | 64      | <b>4 19</b>   |
| Parent Grou | GENERIC |               |
| Name        | MIL     | L             |
| Or          | Paok    | Cancel        |

| Milling Tool-5 Parameters |         |  |  |  |
|---------------------------|---------|--|--|--|
|                           |         |  |  |  |
| 5-Parameter 💌             |         |  |  |  |
| (D) Diameter              | 5.0000  |  |  |  |
| (R1) Lower Radius         | 0.0000  |  |  |  |
| (L) Length                | 75.0000 |  |  |  |
| (B) Taper Angle           | 0.0000  |  |  |  |
| (A) Tip Angle             | 0.0000  |  |  |  |
| (FL) Flute Length         | 50.0000 |  |  |  |
| Number of Flutes          | 2       |  |  |  |
| Direction                 | CLW 💌   |  |  |  |
| 🗖 Z Offset                | 0.0000  |  |  |  |
| 🥅 Adjust Register         | 0       |  |  |  |
| Cutcom Register           | 0       |  |  |  |
| Tool Number               | 0       |  |  |  |
| Catalog Number            |         |  |  |  |
|                           |         |  |  |  |
| Material : HSS            |         |  |  |  |
| Display Tool              |         |  |  |  |
| OK Back                   | Cancel  |  |  |  |

Aparece la ventana que muestra los parámetros de la nueva herramienta creada. En la parte superior está un dibujo donde ese muestran a que parte de la herramienta corresponden cada uno de los parámetros. En el recuadro de **Diameter** se fijara un valor de 5, en **Lenght** 75 y en **Flute Lenght** 50. **OK**.

De nuevo en la ventana de PLANAR\_MILL definiremos el ultimo parámetro necesario para poder realizar la operación. A mitad de la ventana aparece **Cut Depth** (profundidad de corte). Seleccionamos:

## Cut Depth>Fixed Depth Maximum>5.000

Los demás parámetros permanecerán como aparecen. Ahora que ya tenemos los necesario oprimimos **Apply** para correr el programa.

Para cada nivel de corte aparecerá una ventana de **Display Parameters.** En todas las ventanas que aparezcan se dará **OK** hasta regresar a la ventana de **PLANAR\_MILL**.

Por último verificaremos la operación. En la parte inferior de la ventana **PLANAR\_MILL** se encuentra el icono de **Verify**. Lo oprimimos y aparecerá una ventana de controles de visualización. Al oprimir **Play** podremos observar el recorrido de la fresa para cada una de las capas de corte.

