

DATOS GENERAL	.ES:
CAMPO:	DISEÑO MECANICO
CURSO:	DISEÑO Y MANUFACTURA ASISTIDOS POR COMPUTADORA
PRACTICA No. :	004
NOMBRE DE LA I	PRACTICA: MANUFACTURA

PRACTICA 4: FRESADO

NOTA: ESTE DOCUME	ENTO CONSTA DE 24 HOJAS	
NOMBRE		RMG
	REVISO	ELABORO

DESCRIPCIÓN

En la presente práctica se utilizarán las funciones básicas para realizar I un proceso de manufactura en una máquina herramienta CNC fresadora. El proceso se llevará a cabo utilizando las funciones básicas del ambiente de trabajo *Manufacturing*, además del material en bruto.

OBJETIVO

Realizar la manufactura de una pieza prismática en alto relieve, utilizando el modulo de manufactura en fresadora y obtener el código de control numérico.

DESARROLLO

En la pantalla de inicio, selecciona el icono Open *material* para abrir el documento. Aparecerá una ventana con el mismo nombre y en la sección *File Name*, busca el archivo con el nombre "Manufactura1" y en *Folder* la ubicación de la pieza. La pieza es la siguiente (Fig.1):

Figura 1. Pieza a Manufacturar.

1. INICIO

Para cambiar de la aplicación de *Modeling* a manufactura selecciona Ctrl+Alt +M o lo siguiente (Fig 2):

Start — Manufacturign

Figura 2. Aplicación Manufacturing.

2. DEFINICION DE GEOMETRIA

Selecciona la ventana de *Geometry View* y selecciona la sección *WORKPIECE* y aparecerá la siguiente ventana (Fig.3):

Mill Geom	-
Geometry	1
Specify Part	S
Specify Blank	
Specify Check	
Offsets	1
Part Offset	0.0000 🔮
Description	1
Material: ALUMINUM	Ş
Layout and Layer	N
	OK Cancel

Figura 3. Ventana de Selección de parte y bloque.

Para especificar parte seleccionar *Specify Part* aparecerá la siguiente ventana, con la cual selecciona la pieza (Fig.4).

Figura 4. Seleccionar parte.

Selecciona OK.

Para especificar el Bloque seleccionar *Specify Blank* aparecerá la ventana donde se seleccionará *auto-block* y automáticamente aparecerá el bloque tomando las medidas extremas de la parte para su dimensionamiento (Fig.5).

Figura 5. Selección de bloque.

Selecciona OK. Selecciona OK.

3. PROCESO 1 PLANEADO O CAREADO.

Cambiar a la ventana de Program Order View y seleccionar el icono <Create Operation

. Con este comando asignarás las operaciones de manufactura que deseas utilizar.

FACULTAD DE INGENIERIA LIMAC

UNIGRAPHICS NX7.5

El primer proceso de manufactura será nombrado "*Desvaste*", en el cual se quitará la mayor cantidad de material sin afectar la geometría final, dejando un sobre-material (*stock*).

Aparece la ventana Create Operation, seleccionar las siguientes opciones (Fig.6):

Type:

Mill Planar Operation Subtype: FACE_MILLING_AREA

Location:

Program: *Program* Tool: NONE Geometry: WORKPIECE Method: Mill_Rough

Name:

Desbaste

mill planar	
[piana	
Operation Subty	pe
🛃 🛃	ể≝⊮⊮
	ን 🛝 🎝 📲
Location	P
Program	PROGRAM
Tool	NONE
Geometry	WORKPIECE
Method	MILL_ROUGH
Name	

Figura 6. Creación de operación de desbaste (Mill Planar).

Aparecerá la ventana Face Milling Area como se muestra en la siguiente figura (fig.7)

Tace Milling Area			
Geometry			A
Geometry WOR	KPIECE 🔽	I	5
			-
Specify Part			2
Specify Cut Area		3	
Specify Wall Geometry		0	
and the short model			
Specify Check Body			_
Automatic Walls			
Tool			Y
Tool Axis			٧
Path Settings			^
Method [MILL	ROUGII	l 🔛 🧳	5
Cut Pattern	<u></u> ≢ ∠ig		-
Stepover	% Tool Flat		-
Percent of Flat Diamet	er 🚺	75.000	0
Blank Distance		3.000	0
Depth Per Cut		0.000	0
Final Floor Stock		0.000	0
Cutting Parameters			2
Non Cutting Moves		F.	2
Feeds and Speeds		4	i.
			•
Machine Control			Y
Program			۷
Options			v
Actions			^
F 5.	14		
()(=+		Can	nol.
		Can	001

Figura 7. Ventana Face Milling Area.

Selecciona la sección para identificar el área de corte (*Specify Cut Area*) . Selecciona el área siguiente (Fig.8).

Figura 8. Selección de áreas de corte.

Selecciona OK.

Selecciona la sección para seleccionar las paredes de la geometría (Specify Wall Geometry) . Selecciona las siguientes paredes (Fig. 9).

Figura 9. Selección de paredes.

Seleccionar OK.

Seleccionar la sección de herramientas (*Tool*) . Selecciona crear nueva herramienta (*Create new*) y aparecerá la siguiente ventana *New Tool* (Fig. 10) y selecciona las opciones de la ventana y utiliza un cortador plano de 1" (25.4 mm) de diámetro.

🔨 New Tool 🛛 🗙
Туре
[mill_planar
Library A
Retrieve Tool from Library
Tool Subtype
0 5 4 4 4
Location A
Name A
MILL
OK Cancel

Figura 10. Herramienta Nueva.

Selecciona OK y aparecerá la siguiente ventana (Fig.11):

Figura 11. Creación de Herramienta. Introduce los siguientes datos para las dimensiones de la herramienta: *Diameter : 25.4 mm*

FLutes : 4 Tool Number: 1

Todo lo demás lo dejamos con los valores por *default*. Seleccionar *OK*

En la sección *Path Settings* selecciona lo siguiente: *Cut Pattern: Zig*

Percent Of Flat Diameter: 30% Blank Distance: 3 Depth Per Cut: 1 Final Floor Stock: 0

A continuación definirás los parámetros de corte tales como el Stock (sobre material) y la

estrategia de corte de la herramienta. Selecciona la sección *Cutting Parameters* 2. En la pestana de *Strategy* introducir las siguientes características (Fig.12):

Strategy Stock Co	rs	Containment	nt More	- >
Cutting		•		
Cut Direction Cut Order Walls Merge	Climb Cut Climb Cut Conventional Cut Follow Boundary Reverse Boundary		→ \$ \$	
Merge Distance Blank	0.0000][mm			
Blank Distance	0.000	00		
			ОК	Cancel

Figura 12. Cutting Parameters.

En la pestaña de Stock introducir los siguientes valores (Fig.13):

Stock	A	
Part Stock Wall Stock Final Floor Stock Blank Stock Check Stock Tolerance Intol	1.0000 1.0000 0.0000 0.0000 0.0000	
Outtol	0.0800	

Figura 13. Cutting Parameters.

Seleccionar OK

A continuación se definirá la trayectoria en que penetra la herramienta en la zona de corte y el plano de seguridad (para evitar que la herramienta se colisione con la pieza al realizar

movimientos rápidos). Seleccionar Non Cutting Moves

Para seleccionar la forma de penetración de la herramienta, selecciona la pestaña Plunge como se muestra en la figura 14.

Non Cutting Moves		_			- ×
Engage Retract Start	/Drill Points Transfer/F	Rapid	Avoidance	More	
Closed Area		^			
Engage Type	Plunge				
Height	3.0000 mm				
Height from	Previous Level				
Open Area		^		\searrow	
Engage Type	Linear				
Length	50.0000 %Tool				
Swing Angle	0.00	00			
Ramp Angle	0.00	00			
Height	3.0000 mm				
Minimum Clearance	50.0000 (%Tool				
Trim to Minimum Cl	earance				
Initial Closed Area		V			
Initial Open Area		V			
					OK Cancel

Figura 14.Engage.

Seleccionar la pestana de *Transfer/Rapid* para posicionar el plano de seguridad de la Herramienta. En *Clearence Option* seleccionar *Plane* y selecciona el plano siguiente (Fig. 15) con 3 mm de altura.

Engage Retract Start/Drill Points Transfer/Rapid Avoidance More	$A \approx t_{-} \otimes h_{-} \rightarrow \infty$
Clearance	
Clearance Option Plane	Chan 2D Chan Ellad Chan 2D
V Specify Plane	IPWs 2D IPWs IPW •
Between Regions	
Transfer Type Clearance - Tool Ax	lve(7)
Within Regions A	
Transfer Using Engage/Retract 🔽	\sim
Transfer Type Clearance - Tool Ax	
Initial and Final V	
OK Cancel	Distance 3 mm
Element de Diana de	O

Figura 15.Plano de Seguridad.

Selecciona OK.

herramienta. Selecciona *Feeds and Speeds* e introduce los siguientes valores: *Spindle Speed (rpm): 900 Cut: 10 mmpm (FEED RATE)*

Selecciona OK.

Para generar las trayectorias de corte, selecciona *Generate* . Obtendrás lo referente a la figura 16.

Para visualizar la simulación, selecciona *Verify y* la pestaña 2*D Dynamic* para simular en 2D el desbaste (Fig. 17).

Figura 17. Simulación 2D.

4. PROCESO 2, CAVIDADES

Se creará el proceso de maquinado semi-final con una herramienta de ½" (12.7 mm), con un cortador plano. Selecciona de la ventana *Create Operation* y selecciona las siguientes opciones (Fig. 18).

Create Operation	×
Туре	~
[mill_contour	
Operation Subtype	^
*/ "J 🎐 😃 🖑 🦻	
🚸 🚸 🖑 🏘 🚾 ٧	
I) II II II II IA	
r II	
Location	^
Program PROGRAM	
Tool	
Geometry WORKPIECE	
Method MILL_FINISH	
Name	^
Semi-Final	
OK Apply Can	cel

Figura 18. Creación de operación Semi-Final.

Selecciona OK.

Seleccionar el área de corte Norma (Fig. 19).

ame				
	1	1 h	~	-
Action Mode Append				
election Options				~
Geometry OFeatures	//			~
Filter Methods Faces				>
Select All				
Remove				
Expand Item				
Reselect All				
4				
OK Back Casel				
UK Back Cancer				

Figura 19. Área a maquinar.

Selecciona OK.

Crea una herramienta de corte plano de $\frac{1}{2}$ " (12.7mm) y con 4 *Flutes.* Selecciona *OK.*

En Path Settings selecciona las siguientes opciones:

Cut Pattern : Follow Part Percent of Flat Diameter : 30 % Common Depth per Cut : 0.5 mm

Selecciona Cutting Parameters . En la pestaña Stock introducir el siguiente valor de sobre material = 0.2 mm (Fig. 20).

Stock		
Use Floor Same As	Side	
Part Side Stock	0.2000 🚭	
Blank Stock	0.0000	
Check Stock	0.0000	
Trim Stock	0.0000	
Tolerance	^	
Intol	0.0300 🐴 🕒	
Outtol	0.0300	

Selecciona OK.

Figura 20. Sobre material.

Selecciona *Non Cutting Moves* Selecciona *Type = Plunge* en la seccion de *Engage*. En la pestaña *Transfer/Rapid* introducir una distancia de 3mm de *Clearence* entre la herramienta y la pieza. (Fig. 21)

	FACULTAD DE INGENIERIA LIMAC UNIGRAPHICS NX7.5		
Non Cutting Moves	id Ausidense Mars	×	
Clearance		· ₩ ₩ . 1 1 1 · 9 1 · = N .	
Clearance Option Plane			
Specify Plane		p Show 2D Show Filled Show 3D	
Between Regions			
Transfer Type Clearance - Tool Ax		selected	
Within Regions			
Transfer Using Engage/Retract			
Transfer Type Clearance - Tool Ax			
Initial and Final	/		
		My ye xe	
		Distance 3 mm	
	OK Cancel		
	Figura 21. Non C	utting Moves.	
Selecciona OK.			
Selecciona Feeds and Sp Spindle Speed (rpm)=120 Cut = 5 mmpm	peeds 🐏 e introduce 00	los siguientes valores:	
Selecciona OK.			
Genera las trayectorias c 22.	on el comando Genera	ate E. Obtendrás lo referente a la figura	
	Figura 22. Trayect	orias de Corte.	
	.,		
Para visualizar la simulac	ción, selecciona Verify	y la pestaña 2D Dynamic para	

simular en 2D el desbaste (Fig. 23).

Figura 23. Simulando corte 2D.

Selecciona OK.

5. PROCESO 3, BARRENADO.

En este proceso crearás perforaciones con la opción Drill.

Se abre la ventana de *Create Operation* y seleccionar los siguiente valores y datos (Fig.24).

Create Operat	ion	X		
drill				
Operation Subtyp	e	•		
N +	┉╩╶╩╶╨╴			
-116 -425				
זור זור	זר זר 🎫 ר			
n #r				
Location		^		
Program	PROGRAM	-		
Tool	NONE	-		
Geometry	WORKPIECE	-		
Method	DRILL_METHOD			
Name				
DRILLING				
OK Apply Cancel				

Figura 24. Crear operación Drill (barrenado).

Selecciona OK.

Aparece la Ventana de *Drilling.* Especifica *Holes (*Hoyos*),* superficie superior de los *holes* y superficie inferior de los *holes (Fig.25).*

Figura 25. Selección de Barrenos.

Selecciona Barreno <Select> (Fig. 26).

	Name =	
	Cycle Parameter Set - 1	
X Point X	Generic Point	
Select	Group	
Append	Class Selection	
Omit	All Holes on Face	
Optimize	Predrill Points	
Display Points	Minimum Diameter - None	
Avoid	Maximum Diameter - None	
Reverse <	End of Selection	
Arc Axis Control	Selectability - All	XM
Rapto Offset	OK Back Cancel	K red to the
Planning Complete	Back Calles	
Display/Verify Cycle Parameter Sets		
OK Back Cancel		

Figura 26. Selección de Barreno.

Selecciona OK. Selecciona OK.

Especificar la cara superior plana "Specify Top Surface". (Fig.27)

Figura 27. Selección de superficie superior.

Seleccionar la superficie inferior Specify Bottom Surface. (Fig.28) Selecciona ZC Constant = -8

Sottom Surface	<u>ວ – x</u>
Bottom Surface	Α
Bottom Surface Option	ZC: ZC Constant
ZC Constant	-8.0000
Display	>
Information	i
ОК	Apply Cancel

Figura 28. Selección de superficie inferior.

Selecciona OK.

Crear una herramienta de Drill (Fig. 29).

New Tool
Туре
drill
Library
Retrieve Tool from Library
Tool Subtype
Location A
Name A
DRILLING_TOOL
OK Cancel

Figura 29. Selección de herramienta Drill.

Introducir los siguientes valores: Diameter = 6.325 Tool Number = 3 Seleccionar <ok> Seleccionar en "Cycle Type" Cycle = Peck Drill

Selecciona OK.

Selecciona la Vista "Front" y Seleccionar el cuerpo como Static Wireframe (Fig. 30).

Selecciona OK.

Figura 31. Simulación 3D.

6. PROCESO 4, RANURAS PROFUNDAS.

Crearás una operación con *Mill Contour*, con las siguientes opciones, para realizar el barreno trapezoidal. (Fig.32)

🔪 Create Operation 🛛 🗙						
Туре						
[mill_contour						
Operation Subtype						
پ پ چ	€ ℓ ⁰ V [®]					
- 🗢 🗇 🖑	🦇 🚾 🕅 🔰					
Q) (M) (M)	AV AD 🔥					
p 📰						
Location	^					
Program	PROGRAM					
Tool	MILL_1 (Milling Tool					
Geometry WORKPIECE						
Method MILL_SEMI_FINISH						
Name A						
Semi-Final-Barreno2						
OK Apply Cancel						

Figura 32. Creación de operación Mill Cotour.

Selecciona OK.

Especificar el área de corte (Fig.33).

Name	e : Face of Extrude(2)
Action Mode Append	
Selection Options	
Geometry OFeatures	
Filter Methods Faces	
Select All	
Remove	
Expand Item	
Reselect All	
OK Back Cancel	
	24

Figura 33. Creación de operación Mill Contour.

Crea una herramienta, seleccionando $Mill_2$ con los siguientes valores: Diameter = 3.125 Flutes = 4 Tool Number = 4Selecciona OK. Seleccionar las siguientes opciones en Path Settings: Percent of Flat Diameter = 30 Distance = 1

Selecciona *Cutting Parameters* con los siguientes parámetros: Stock = 0.25 mm

Selecciona OK.

Selecciona Non Cutting Moves con los siguientes parámetros: Engage = Plunge Transfer/Rapid = 3 mm de clearance de la superficie superior.

Selecciona OK.

Selecciona Feeds and Speeds con los siguientes parámetros: Spindle Speed = 1200 rpmCut = 5 mmpm

Selecciona OK.

Genera las trayectorias con el comando *Generate* Uvisualizar la simulación (Fig. 34).

Figura 34. Simulación en 2D.

7. PROCESO 5, ACABADO CAVIDAD

Crea la operación de maquinado final *(Finish)*, en este caso utilizarás la función *Rest Mill.* La zona de corte *(Specify Cut Area)* se la siguiente (Fig. 35):

Figura 35. Specify Cut Area

Usar una herramienta de bola (Ball Mill) de 3.125 mm de diámetro (Fig. 36):

Ē	Milling Tool-Ball Mill	- ×		
Ľ	Tool Holder More			
	Legend 🔨			
	FL FL D			R TC
	Dimensions A		(
	(D) Diameter 3.1750			XC XV XC
	(B) Taper Angle 0.0000			
	(L) Length 75.0000			
	(FL) Flute Length 50.0000			
1	Flutes 2	Ш		
	C'au ve	20	Taal	

Figura 36. Tool.

En la sección Path Settings selecciona lo siguiente:

Patrón de corte: Follow Part Stepover: % Tool Flat Percent of Flat Diameter = 20 Distance = 0.5 mm

En la sección *Non Cutting Moves* $\overline{\mathbb{Z}}$, seleccionar un plano de seguridad a 3 mm de altura de la cara superior en la dirección " \mathbb{Z} " (Fig. 37).

Figura 37. Non Cutting Moves

Selecciona *Feeds and Speeds* e introduce los siguientes valores: Spindle Speed = 1200 rpm $\dot{C}ut = 5 mm$

8. VISUALIZAR TRAYECTORIAS

Finalmente, genera las trayectorias con el comando Generate

v selecciona

Figura 38. Simulación final.

9. Generación del Código de Control Numérico.

Para generar el código de control numérico de todo el proceso se realiza lo siguiente: En la ventana de Program Order View, selecciona Program y con botón derecho del Mouse seleccionar Post-Process (Fig. 39).

Figura 39. Generación de CNC.

Seleccionar el Postprocesador de 3 ejes *"Mill_3_AXIS", también selecciona en Units Metric/PART,* el código se generará en un archivo TXT (Fig. 40). Selecciona *OK.*

< 🗙 Postprocess 🗙 >		
Postprocessor	^	
WIRE_EDM_4_AXIS	•	
MILL_3_AXIS		
MILL_3_AXIS_TORBO	=	
MILL_5_AXIS_SINUMERIK_ACTT_IN		
MILL_5_AXIS_SINUMERIK_ACTT_MM		
MILL_5_AXIS		
	-	
Browse for a Postprocessor		
Output File	•	
File Name		
J:\Manufactura_cambio1		
Browse for an Output File		
Settings	^	
Units Metric/PA	RT 🔽	
List Output		
OK Apply C	ancel	

		Το	ol Path Listing has 3079 lines.
	-	i Information	
Operation Navigator - Pro	gram (File Edit	
Name	Toole	40	
NC_PROGRAM		N0010 G40 G17 G90 G70	
📑 Unused Items		N0020 G91 G28 20.0	
PROGRAM		N0040 T02	
V BESBASTE	1	N0050 G0 G90 X2.9685 Y-1.2788 S900 M03	
- 🗸 🕵 SEMI-FINAL		N0060 G43 Z.1181 H00	
V CRILLING	8	N0070 Z1181 N0080 G1 Z- 2362 F 4 M08	
		N0090 X2.4685	
🗆 🗸 🕵 REST_MILLING		N0100 X1.4361	
		N0110 G2 X.9843 Y-1.5236 I4518 J.2945	
		N0120 G1 A 9645 N0130 G2 X-1,4361 Y-1,2788 I0.0 J.5393	
		N0140 G1 X-2.4685	
		N0150 X-2.9685	
		N0160 Z1181 N0170 G0 Z 1181	
		N0180 X2.9685 Y9946	
		N0190 Z1181	-
	1	· .	

Figura 40. Generación de CCN.

10. FIN DE LA PRACTICA