

DATOS GENERALES: CAMPO: DISEÑO MECANICO CURSO: DISEÑO Y MANUFACTURA ASISTIDOS POR COMPUTADORA PRACTICA No. : 003 NOMBRE DE LA PRACTICA: ENSAMBLE PISTON

PRACTICA 3: ENSAMBLE

NOTA: ESTE DOCUMENTO CONSTA DE HOJAS					
NOMBRE		RDGC			
	REVISO	ELABORO			

DESCRIPCIÓN

En la presente práctica se utilizarán las funciones básicas de Assembly de UG NX7.5, con el fin de generar un ensamble de piezas móviles de un cigüeñal dentro de un motor.

OBJETIVO

Realizar el ensamble de modelos previamente generados, utilizando restricciones de ensamble.

DESARROLLO

1. De la pantalla de inicio, selecciona el ícono New New para crear un nuevo documento.

Aparecerá una ventana con el mismo nombre y en la sección **Templates** elije la opción **Assembly**; teclea el nombre "ensamble" y en *Folder* la ubicación de la carpeta donde lo deseas guardar (Figura 1)

emplates				٨	Preview
			Units Millin	neters 💌	~
Name	түре	Units	Relationship	Cwner	
🚺 Model	Modeling	Millimeters	Stand-alone	NT AUTH	
🙆 Assembly	Assemblies	Millimeters	Stand-alone	NT AUTH	
🗟 Shape Studio	Shape Studio	Millimeters	Stand-alone	NT AUTH	-
NX Sheet Metal	NX Sheet Metal	Millmeters	Stand-alone	NT AUTH	E- M B 0404-089-020
a Aero Sheet Metal	Aerospace Sh	Millmeters	Stand-alone	NT AUTH	H-W H9 1723-183-024
🙀 Routing Logical	Routing Logical	Millimeters	Stand-alone	NT AUTH	- 2211-273-011
Routing Mechanica	Routing Mech	Millmeters	Stand-alone	NT AUTH	
Routing Electrical	Routing Electr	Millmeters	Stand-alone	NT AUTH	Uroportion
ት Blank	Gateway	Millimeters	Stand-alone	none	Properties
					Type: Assemblies Units: Millimeters Last Modified: 04/13/2010 07:44 p.m. Description: NX Example, starts add component
ew File Name Warne <mark>assembly1.p</mark>	ort				
older C:\Users\R	iger\Desklapl\	respaldo\	CAD docente\1	NX 75\P	
art to reference					
Jame			2		

Figura 1

2. Insertar piezas a ensamblar

Aparecerá la ventana de la figura 2, en donde deberás elegir dentro de la sección Placement la

opción **Select origin** para posicionar la primera pieza dentro del ensamble y después el ícono para buscar la ruta donde guardaste los archivos correspondientes.

Escoge el archivo *base* e ingresa las coordenadas (0,0,0) para posicionarlo dentro del ensamble.

Selecciona OK.

Add Component	→ >
Part	^
* Select Part (0)	3
Loaded Parts	
Recent Parts	
Open	2
Duplicates	×
lacoment	
racement	
Positioning	Move
Scatter	
Replication	V
ettings	v
Preview	×
OK	Apply Cancel
Fig	
гіу	uia z

Nuevamente, dentro de la sección *Placement* elige *by Constraints* y busca el archivo *cigüeñal.* Se te pedirá elegir un par de entidades de ambos archivos y seleccionarás las circunferencias interna de la base y externa del cigüeñal para que se vea como en la figura 3.

Realiza las mismas acciones descritas anteriormente y selecciona la pieza llamada *biela* adherida al ensamble por medio de restricciones *(by constraints).* Elige la restricción *Concentric* y las entidades circulares que se muestran en las figuras 4 y 5.

Obtendrás el ensamble de la figura 6.

Figura 6

Como el anterior paso, realiza un ensamble del modelo llamado *munon*, ahora con la restricción *Touch align* con orientación *Align* (Figura 7) y selecciona las líneas de centros del *munon* y la *biela* (Figura 8 y 9). Después agrega la restricción *Distance* (Figura 10) de 10mm entre las áreas mostradas en las figuras 11 y 12.

Figura 7

Figura 10

Selecciona OK.

El avance de ensamble que hasta el momento se tiene, se muestra en la figura 13.

Figura 13

La última pieza que se ensamblará es el pistón. Para ello, seleccionamos nuevamente **Add** *component* elige *pistón* y selecciona *by constraints; Apply* (Figura 14). En la ventana de restricciones elige el tipo *Touch Align* y *Infer Center/Axis* en la orientación. Escoge los ejes de simetría del *munon* y el *pistón* (Figura 15).

🗙 Assembly Constraints 🛛 🔾 🗕 🗙
Туре 🔨
Touch Align
Geometry to Constrain
Orientation
* Select Two Objects (0)
Reverse Last Constraint
Settings V
Preview A
Preview Window
Preview Component in Main Window
< OK > Apply Cancel

Figura 14

Para acomodar el pistón se usa la herramienta move component de Ensamble (Figura 16).

Assemblies/Component Position/Move ---- Component.

Elige en movimiento Angle 90° y selecciona al pistón (Figura 17).

Selecciona al vector como el eje del *munon* (Figura 18).

Para acomodar finalmente el pistón, se deben eliminar las restricciones entre el **munon** y el **pistón**; seleccionándolas y borrándolas manualmente (Figura 19).

Por último, se aplica la restricción de distancia (Figura 20) entre una de las caras interiores del pistón y la cara interna del tope del *munon* (Figura 21).

El ensamble final que se obtendrá es lo referente a la figura 22.

Figura 22

Para seguir practicando las herramientas se le recomienda al lector, ensamblar los cuatro arreglos de bielas y pistones.

3. Fin de la práctica.