

DATOS GENERAL	LES:
CAMPO:	DISEÑO MECANICO
CURSO:	DISEÑO Y MANUFACTURA ASISTIDOS POR COMPUTADORA
PRACTICA No. :	006
NOMBRE DE LA I	PRACTICA: ANÁLISIS DE ELEMENTO FINITO

PRACTICA 6: ANÁLISIS DEL BIELA

NOTA: ESTE DOCUME	ENTO CONSTA DE n HOJAS	
NOMBRE Y FIRMA		RFG
	REVISO	ELABORO

DESCRIPCION:

En la siguiente práctica se utilizarán los comandos básicos para realizar un Análisis estructural utilizando el método de elemento finito, en el cual se obtienen resultados de esfuerzos y desplazamientos de un componente mecánico (Biela). La práctica consiste en cuatro pasos: el primero es asignar material al componente sólido; el segundo paso, es realizar un mallado del componente; el tercer paso es asignar las fuerzas y restricciones y el cuarto paso es crear la solución del sistema.

OBJETIVO:

Mostrar al usuario el uso de las funciones básicas del módulo de *Advance Simulation* en *UGS-NX 7.5*, para realizar un análisis estructural.

DESARROLLO:

1. Abre un nuevo documento:

File ---- Open

Nombre del Archivo: *Análisis Fem* Selecciona *OK*.

2. Seleccionar el módulo de análisis de elemento finito (Fig. 1): *Advance Simulation*. Selecciona:

Figura 2. Advance Simulation

Ubica las pestañas en la parte izquierda. Abre la primera pestaña con el nombre de *Part Navigator*. Con botón derecho del ratón, se selecciona el nombre del archivo que estás trabajando para crear 3 archivos, uno con extensión *fem*, otro con la extensión *prt* y otro con extensión *sim* (*New FEM and Simulation*) (Fig. 3).

Simulation Navigator

Name		Status	En	viro
🗃 Analisis fem <u>.</u> r	ort			
1	👸 New FEN	1		1
E	🚱 New FEN	1 and Simulation		
ž	P New Ass	embly FEM		

Figura 3. New FEM and Simulation

A continuación aparece la ventana de la figura 4.

New FEM and S	Simulation	<u>ა – x</u>
File Names		^
Analisis fem_fem1.	fem	
Analisis tem_sim1.	sim	
CAD Part		V
Solver Environme	nt	^
Solver	NX NASTRAN	
Analysis Type	Structural	
Description		^
	ОК	ancel

Figura 4. New FEM and Simulation

Selecciona OK.

Solution	<u>່</u> ວ	Ξ
Solution		
Name	Solution 1	
Solver	NX NASTRAN	-
Analysis Type	Structural	-
Solution Type	SESTATIC 101 - Single Constraint	-
SESTATIC 101 - Single	Constraint	
	OK Apply Cance	el l

Figura 5. Solution

Selecciona OK.

En resumen podemos decir que el proceso de elemento finito en UG NX 7.5 con el NASTRAN consta de 4 pasos:

- I. Selección del material.
- II. Dividir el sólido en elementos (Mallado).
- III. Aplicar las fuerzas y restricciones.
- IV. Solución del sistema.

I. Selección del material

Para selección del material se tiene que activar el archivo con extensión *fem*. En el menú principal selecciona *Window* → *Análisis fem_fem1.fem* (Fig. 6).

Para seleccionar el material, selecciona el ícono *Material Properties* Properties Asigna el material de la pieza, seleccionando *Steel* y posteriormente el sólido (Fig. 7).

ect body							^ -	
Select Body (1)							
aterial List							^	
Location						v	<	
Filters						V	r	
Materials						A		
Materials Used 🔺	Name	Label	Category	Туре	Location	Library		
Materials Used 🔺 🐴	Name S/Steel_PH15-5	Label	Category Metal	Type Isotropic	Location	Library physicalmateriallibrary. A		The
Materials Used 🔺 🐴	Name S/Steel_PH15-5 SMC	Label	Category Metal Plastic	Type Isotropic Isotropic	Location	Library physicalmateriallibrary. ^ physicalmateriallibrary.		ZVrc
Materials Used 🔺 🔒	Name S/Steel_PH15-5 SMC Sodium_Liquid	Label	Category Metal Plastic Other	Type Isotropic Isotropic Fluid	Location	Library physicalmateriallibrary. A physicalmateriallibrary. physicalmateriallibrary.		3
Materials Used A G G	Name S/Steel_PH15-5 SMC Sodium_Liquid Steel	Label	Category Metal Plastic Other Metal	Type Isotropic Isotropic Fluid Isotropic	Location	Library physicalmateriallibrary. A physicalmateriallibrary. physicalmateriallibrary		The
Materials	Name S/Steel_PH15-5 SMC Sodium_Liquid Steel Steel-Rolled	Label	Category Metal Plastic Other Metal Metal	Type Isotropic Isotropic Fluid Isotropic Isotropic	Location	Library physicalmateriallibrary. ^ physicalmateriallibrary. physicalmateriallibrary physicalmateriallibrary.		Tre
Materials	Name S/Steel_PH15-S SMC Sodium_Liquid Steel-Rolled Sulfur_Dioxide_Liquid	Label	Category Metal Plastic Other Metal Other	Type Isotropic Isotropic Fluid Isotropic Isotropic Fluid	Location	Library physicalmateriallibrary. physicalmateriallibrary. physicalmateriallibrary. physicalmateriallibrary. physicalmateriallibrary. physicalmateriallibrary. physicalmateriallibrary.		

Figura 7. Selección de material.

Selecciona OK.

II. Mallado.

Se asignará el tipo de elemento de la malla a utilizar para el análisis. Selecciona el

ککر D

ícono 3D Tetrahedral Tetrahedral y se despliega una ventana (Fig. 8), donde debes de seleccionar el tipo y tamaño del elemento, en este caso selecciona el CTETRA(10) y 5 mm, respectivamente

	FACULTAD DE LIM UNIGRAPH	INGENIERIA AC ICS NX7.5	
🔪 3D Tetrahedral Mesh	ວ − x		
Objects to Mesh	•		
Select Bodies (1)	→		
Element Properties	Λ		
Туре	CTETRA(10)		
Mesh Parameters	٨		
Element Size	5 mm 🔹 🎸	440	
Attempt Free Mapped Meshing		×c	
Mesh Quality Options	V		
Mesh Settings	V		
Model Cleanup Options	V		
Destination Collector	V		
Preview	V		
0	Cancel		

Figura 8. 3D Tetrahedral

Selecciona el sólido y posteriormente *OK*. El mallado que obtendrás es el siguiente (Fig. 9):

Figura 9. Mallado

III. Aplicación de fuerzas y restricciones.

Del menú principal, selecciona *Window* para activar el archivo *Análisis fem_sim1.sim.* A continuación se activarán los comandos para aplicar las cargas y las restricciones al modelo.

Para la aplicación de fuerzas, selecciona el ícono *Force* (Fig. 10) Force, donde tendrás diferentes opciones de aplicación de fuerza: Momento, torque, fuerza puntual, fuerza uniformemente repartida, etc.

Selecciona *Bearing*, se desplegará la ventana con el mismo nombre. En la sección *Description*, selecciona especificar vector a partir de dos puntos (Fig. 11).

- Au	vanceu si	mulatio	n - [(simul	ation) Ar	ialisis rer	"-" 🍫	
<u>E</u> dit	<u>V</u> iew	In <u>s</u> ert	Fo <u>r</u> mat	<u>T</u> ools	<u>I</u> nform	ati 📥	na <u>lys</u> i
t•	🗋 🤌		3 %				ego
	ę	1 <u>.</u>	8	È	ŧ	<u>_</u>	;
ure	Ide	alize	Ma	terial	Physi	ical 🎾	Mes
rs	Geo	metry	w ;	erties	Prope	- 🖞	, one c
	Bearing	9		200		xc	- x
N	lame					YC	V
C	ylindric	al or Ci	rcular Ob	ject		zc	^
	* Select	Object	t (0)			-XC	2
C	irection					-YC	~
	* Specif	fy Vect	or (0)			tzç	-
F	Reverse E	Directio	n			†	
P	ropertie	\$					^
[Force			Expre	ssion		-
						N 🔹	•
	Angle			180		deg 🔹	•
C)istribut	ion					v
Ca	rd Name	FOR	CE				
		F	OK		oply	Cance	e

Figura 11. Bearing

Selecciona OK.

FACULTAD DE INGENIERIA LIMAC UNIGRAPHICS NX7.5

Selecciona *Dialog Vector*, donde seleccionarás las coordenadas de la ubicación del vector que dirige la fuerza que se aplica en la parte. Aparecerá una ventana con el nombre de *Vector* (Fig. 12) donde seleccionarás las coordenadas del punto de inicio y punto final del vector de la fuerza.

🔨 Vector	<u> </u>
Туре	^
Two Points	
Through Points	٨
Specify From Point (1)	± 🔏 -
Specify To Point (1)	± 🔏 🔽
Figura 12. Vector	

Selecciona el *Point Dialog* de la sección *Specify From Point* para agregar las coordenadas del punto de inicio del vector (X= -22.52, Y= 134.81, Z= 7.5). Aparecerá la ventana de la figura 13:

N Point	ວ − ×
Туре	٨
🄏 Inferred Point	
Point Location	•
Select Object (0)	→
Coordinates	٨
Reference	WCS
хс	-22.5284 mm 🗣
YC	134.8197 mm 🛃
ZC	7.500015 mm 퇒
Offset	٨
Offset Option	None
	OK Cancel

Figura 13. Punto de inicio

Ahora selecciona el *Point Dialog* de la sección *Specify To Point* para agregar las coordenadas del punto final del vector (X = -34.24, Y = 111.51, Z = 7.5). Aparecerá la ventana de la figura 14:

N Point	ວ − x
Туре	^
🐔 Inferred Point	
Point Location	۸
Select Object (0)	→
Coordinates	٨
Reference	WCS
хс	-34.2414 mm 🔸
YC	111.5180 mm 📘
ZC	7.500020 mm 📘
Offset	Λ
Offset Option	None
	OK Cancel

Figura 14. Punto final

Selecciona OK y en regresaras a la ventana de Bearing, donde la fuerza que aplicarás es de 1000N en la superficie que se indica en la figura 15.

Figura 14. Bearing

Selecciona OK.

Para impedir que el sólido se mueva, se aplican las restricciones de movimiento en

ħ Constraint Type desplazamiento y rotación del sólido. Selecciona el ícono de restricciones y te aparecerán las siguientes opciones de restricciones (Fig. 15): 🚀 User Defined Constraint Enforced Displacement Constraint Fixed Constraint 🛃 Fixed Translation Constraint 🛃 Fixed Rotation Constraint Simply Supported Constraint Pinned Constraint 🐍 Cylindrical Constraint 🚷 Slider Constraint Roller Constraint Symmetric Constraint Anti-Symmetric Constraint Automatic Coupling M Manual Coupling

Figura 15. Restricciones.

Seleccionarás la opción *Fixed Translation Constraint* y aparecerá la ventana con el mismo nombre. Seleccionarás los puntos que se indican en la figura 16.

Figura 16. Área de fijación

Selecciona *OK*. Obtendrás lo referente a la figura 17

Figura 17. Cargas y restricciones

IV. Crear solución.

En la ventana de *Simulation Navigator*, selecciona *Solution 1*, y da clic en el segundo botón del ratón, seleccionando la opción *Solve* (Fig. 18).

Figura 18. Solve

Aparecerá la ventana con el mismo nombre donde deberás seleccionar **OK** para iniciar el proceso de solución del análisis. Cuando el software termina de resolver el sistema, la ventana de **Analysis Monitor** tendrá que tener el estatus de "completo" (Fig. 19).

Analysis Job Monitor

analisis_fem_sim1-solution_1 - Completed
Reset List
Analysis Job Information
Check Analysis Quality
Cancel

Figura 19. Analysis Monitor

Selecciona *Close* y *Cancel*. Si todo resulta bien, selecciona con doble clic del ratón en la opción de resultados (Fig. 20 y 21) y De la barra de herramientas selecciona *Play* para poder visualizar la animación (Fig. 22).

Figura 20. Results

0.0408	
0.0374	
0.0340	
0.0306	
0.0272	
0,0238	
0.0204	A
0.0170	
0.0136	
5010.0	ZC
0.0068	
Z 0.0034	
0.0000	×c
X	

Figura 21

- 6	◀			Ш	
Animation	Previous	Next	Play	Pause	Stop

Figura 20. Play

3. Fin de la práctica.