

DATOS GENERALES:				
CAMPO:	DISEÑO MECANICO			
CURSO:	DISEÑO Y MANUFACTURA ASISTIDOS POR COMPUTADORA			
PRACTICA No. :	0007			
NOMBRE DE LA PRACTICA: MANUFACTURA				

FACULTAD DE INGENIERIA

PRACTICA 7: MAQUINADO ALTO RELIEVE

NOTA: ESTE DOCUMENTO CONSTA DE 20 HOJAS					
NOMBRE Y FIRMA					
	REVISO	ELABORO			

Descripción

En esta práctica se realizará la manufactura de una pieza mediante el uso de una máquina herramienta de control numérico (CNC), en este caso un Centro de Maquinado Vertical (VMC) con controlador Siemens.

El proceso de manufactura consiste de una operación llamada desbaste, utilizando un cortador vertical recto, conocido como fresa de 1/2" de diámetro,

Con el fin de realizar la simulación de la manufactura de la pieza, se utilizará el ensamble de la prensa que se normalmente se encuentra montada en el VMC. Dicho ensamble está compuesto por dos piezas: la pieza Prensa y por la pieza Mordaza, esto para que el usuario tenga una mejor idea de los elementos involucrados en la sujeción y manufactura de la pieza y se obtendrá el código de control numérico.

Objetivo

Mostrar los comandos básicos para realizar el maquinado de una pieza prismática y obtener el código G para el controlador Siemens, utilizando el módulo de manufactura de NX6.

Desarrollo

1. Abrir el archivo manufactura 2

<File> <Open...> Nombre del archivo: Manufactura 2 Selecciona [OK]

Se despliega la prensa de la figura 1.

Figura.- 1 Archivo Manufactura 2.

Se recomienda para la manufactura de la pieza, colocar el cero pieza en el centro y en la parte superior de la placa.

2. Generación del perfil de trabajo

Ya que se cuenta con la prensa de sujeción, es necesario dibujar el bloque a partir del cual se realizará la pieza a manufactura.

Selecciona el comando **<Sketch**> y dibuja el siguiente **Sketch** con los puntos que se muestran a continuación.

Punto 1	XC=-59.7	YC=36.3
Punto 2	XC= 59.7	YC=36.3
Punto 3	XC= 59.7	YC=-36.3
Punto 4	XC=-59.7	YC=-36.3

Con lo que se obtiene el marco en color verde de la figura 2.

Figura.- 2 Sketch 1 rectángulo.

Selecciona <Finish Sketch>

Ahora se dibujará el perfil a manufacturar usando el plano de trabajo XY.

Selecciona el comando \langle **Sketch** \rangle y con la opción de dibuja los siguientes puntos.

Punto 1	XC=-39.85	YC=-2.476
Punto 2	XC= -22.78	YC= 6.656
Punto 3	XC= 3.56	YC=2.31
Punto 4	XC= 23.47	YC= -11.00
Punto 5	XC= 38.75	YC= -11.61

Después de dibujados los puntos, selecciona el comando	Spline

Figura.- 3 Creación de una curva Spline a partir de Puntos.

Aparece la ventana de diálogo (Fig.3) con el botón del ratón derecho selecciona cada uno de los puntos generados anteriormente (Fig.4).

< 🗙 Studio Spline 🗙 >	
Spline Settings	^
Method Single Segment Matched Knot Position Closed Degree 3 C Associative	
Inferred Constraint Settings	V
Drawing Plane	V
Micro Positioning	V
OK Apply Cance	

Figura.- 4 Parámetros para definir curvas Spline.

Selecciona **Apply** y la curva generada deberá ser como la que se muestra en la figura 5.

Figura.- 5 Curva final.

Selecciona <OK>

A continuación se generará una nueva curva mostrando un procedimiento diferente.

Selecciona el comando spline y selecciona la opción **Point Constructor**

Figura.- 6

< 🔪 Point う -	× >
Туре	•
🔏 Inferred Point	
Point Location	^
Select Object (0)	↔
Coordinates	^
Relative to WCS	Absolute
x	98.88924 mm 💽
Y	-32.7327 mm 💽
z	0.000000 mm 💽
Offset	^
Offset Option	None
	OK Cancel

Figura.- 7

Introduce los valores de los puntos absolutos para generar el **Spline**, despues de cada coordenada da clic en **OK**.

Punto 1	XC= -37.38	YC= -6.22
Punto 2	XC= -6.76	YC= -0.97
Punto 3	XC= 10.45	YC= -9.96
Punto 4	XC= 24.22	YC= -17.14
Punto 5	XC= 39.049	YC= -17.14

Finalmente utilizando una línea une las dos curvas Spline (Fig.8)

Figura.- 8 Perfil a manufacturar.

Selecciona <Finish Sketch>

3.- Generación de sólidos

Seleccionar el comando **Extrude** y seleccionar el **Sketch** del rectángulo e introduce los siguientes valores.

Figura.- 9 Extrusión de la base.

Selecciona <OK>

Crear el siguiente extrude con los valores de la figura 10.

Figura.- 10 Sólidos no unidos.

Selecciona el comando Unite y une los dos sólidos creados.

Figura.- 11 Sólidos finalizados

Selecciona <OK>

Con lo que la pieza a manufacturar queda montada en la prensa, como se muestra en la figura 12.

Figura.- 12 Pieza lista para manufacturar.

Como se observa en la figura 12 el sistema de coordenas está en el centro de la pieza y en la parte superior.

Esto ayudará a visualizar el corte de la herramienta en la dirección Z, ya que será siempre negativa en el código de control numérico.

4.- Manufactura

Para realizar la manufactura cambia de aplicación, seleccionando **<Start> <Manufacturing>**

Figura.- 13 Módulo de manufactura.

Para iniciar la manufactura se asignará la geometría a trabajar.

Seleccionar el comando Geometry View.

Seleccionar la opción **WORKPIECE**, con lo que despliega la ventana de la figura 14.

Para asignar la pieza a maquinar selecciona **Specify Part** a continuación da clic en a el sólido de la figura 15.

Operation Navig	ator · Geometry	Geometry	
Name GEOMETRY	Path	Specify Part	
GUnused Items		Specify Blank	
		Specify Check	
		Offsets	^
		Part Offset	0.0000 🔒
		Description	^
		Material: CARBON STEEL	<i>Ş</i>
		Layout and Layer	V
			OK Cancel
	>		
Dependencies	V		

Figura.- 14

Selecciona <OK>

Ahora selecciona la materia prima a partir de la cual se obtendrá la pieza.

Name			^		×
	Topology				A A A
Action Mode		Append 💌		1	the second
Selection Options					
Geometry	Features Face	ets			
	Filter Methods Bodies	-			
	Offset	0.0000			
XM+ 0.0000	хм- (0.0000			
YM+ 0.0000	YM- [0.0000	_		
ZM+ 0.0000	ZM- [0.0000			
	Select All			-17	
	Remove		-	11	
	OK Back	Cancel		11	

Selecciona Specify Blank y selecciona la opción Autoblock

Figura.- 15

Selecciona <OK>

Ya que se tiene la geometría seleccionada, se crearán las operaciones de manufactura.

Selecciona **Program View** e inserta una operación como se muestra en la figura 18.

Figura.- 16 Generación de operaciones de fresado.

En la ventana Create Operation selecciona la opción de la figura 19____

< 🔪 Create Op	eration X >
Туре	
mill_contour	
Operation Subty	pe A
	<u>ר ע</u> ע□ א≈
- 🚸 🚸 👌	אין איי 🚽 🖗 🖷
<u>())</u> ()))// (N) (II) (II)
🕹 🎢 🛛	
Location	^
Program	PROGRAM
Tool	NONE
Geometry	WORKPIECE
Method	
ОК	Apply Cancel

Figura - 17 Selección tipo de proceso.

Aparece la ventana de **Cavity Mill,** esta operación se selecciona cuando se desea realizar operaciones de desbaste y acabado para fabricar cavidades en moldes de inyección de plásticos.

Para la manufactura de la pieza en esta práctica, estrictamente no es necesario utilizar la opción **Cavity Mill**, sin embargo, como la idea del curso es manufacturar moldes de inyección de plásticos se muestra la opción **Cavity Mill**.

Otra opción de manufactura para la pieza es **ROUGH_FOLLOW**, la cual permite realizar procesos de desbaste en superficies planas (Fig. 18).

< 🔪 Create O	peration 🗙 >	
Туре	•	^
[mill_planar		
Operation Subty	rpe A	
N	« u e e	
		=01
Į [▲]	P	
Location	^	
Program		
Tool	NONE	_
Geometry	WORKPIECE 🔽	
Method	METHOD	~
	K Apply Cancel)

Figura.- 18 Proceso alternativo de manufactura.

Continuando con la práctica, ahora se seleccionará el cortador necesario para realizar la manufactura.

En la sección de Tool crear una herramienta.

Tool		~
Tool	NONE	N
Output		Create new

Figura.- 19 Selección de las herramientas

En la ventana de la figura 20 selecciona el subtipo de herramienta, llamado **End Mill** o cortador vertical recto.

< 🔪 New Tool 🗙 >
Туре
mill_contour
Library A
Retrieve Tool from Library
Tool Subtype
🛃 🛛 🕹 🚨
Location A
Name A
MILL_1
OK Cancel

Figura.- 20 Selección del tipo de herramienta.

Seleccionar <OK>

En la venta relacionada con la herramienta cambia el valor del diámetro como se muestra en la figura 21.

		1
Dimensions	^	
(D) Diameter	12.7000	
(R1) Lower Radius	0.0000	
(L) Length	75.0000	
(B) Taper Angle	0.0000	
(A) Tip Angle	0.0000	
(FL) Flute Length	50.0000	
Flutes	4	
Description	V	
Numbers		1

Figura.- 21 Parámetros para definir herramienta de corte.

La aplicación regresa a la ventana **Cavity Mill**, en esta ventana selecciona la opción **Path Settings**, e introducir los siguientes valores.

Tool Axis	v
Path Settings	^
Method MILL_ROUGH	N 🔛 ⊱
Cut Pattern	Follow Part 🔽
Stepover % To	ool Flat 🔽
Percent of Flat Diameter	50.0000
Global Depth per Cut	1.0000
Cut Levels	
Cutting Parameters	
Non Cutting Moves	
Feeds and Speeds	e
Machine Control	V

Figura.- 22 Asignación de los parámetros de corte.

Selecciona la opción Cutting Parameters.

En el caso de que se desee introducir valores de sobrematerial, para después realizar procesos de acabado, se utiliza las opciones de la pestaña de **Stock**. En este caso selecciona 1 mm de sobre material en la superficie inferior de la pieza.

Strategy Stock Corne	rs Connections Containment More	
Stock Use Floor Same As S Part Side Stock Part Floor Stock Blank Stock Check Stock Trim Stock Tolerance		III
Intol Outtol	0.0300 0.1200	ncel

Figura.- 23 Parámetros de sobremaetrial.

Ahora se seleccionarán los parámetros asociados a los movimientos que no implican corte de material, es decir movimientos rápidos G00.

Selecciona la pestaña Non Cutting Moves.

Para establecer la entrada del cortador en el material se utiliza la pestaña Engage.

En la sección Closed Area y en la opción Engage Type selecciona None.

Lo que implica que la herramienta penetrará de manera perpendicular al plano de

trabajo.

-l l.					
Closed Area		^			
Engage Type	None				
Open Area		^			
Engage Type	Linear		\leq	>>	>>
Length	50.0000 %To	ol 🔽			
Swing Angle	0.0	0000			
Ramp Angle	0.0	0000			
Height	3.0000 mm				
Minimum Clearance	50.0000 (%To	ol 🔽			
🛃 Trim to Minimum	Clearance				
Initial Closed Ar	ea	V			
Initial Open Area	1	V			

Figura.- 24 Definición de entrada del cortador a la pieza a manufacturar.

En el caso de realizar movimientos rápidos es necesario primero mover la herramienta en la dirección Z a un punto seguro, antes de cualquier movimiento en los ejes X y Y, para evitar colisiones con la pieza de trabajo o los elementos de sujeción (Prensa).

En la pestaña **Transfer/Rapid Plane** y en la sección **Clearance Option** selecciona **Plane**.

Ahora seleccionar el ícono Specify Plane

Clearance Option 5pecify Plane	Plane		I G	sifts.	
Setween Regio	ons	^			
Transfer Type	Clearance				
Vithin Regions	;	^			
Transfer Using	Engage/Retract				
Transfer Type	Clearance				
nitial and Fina	I	V			

Figura.- 25 Definición de plano de seguridad.

Aparece la venta de la figura 26, selecciona el botón Plane Subfuntion

< 🗙 Plane Construct	tor 🗙 >			
Filter	Any			
Vector Method	#t -			
Offset	0.0000			
Selected Constraints				
<u>kee</u> te:	25. 3× 32			
Plane Subfunction				
List Available	Constraints			
ОК	Apply Cancel			

Figura.- 26

< N Plane X D
Principal planes
Work Absolute
OK Back Cancel

Figura.- 27

Selecciona <**OK**> Selecciona <**OK**>

Para asignar los parámetros de corte, en la ventana de **Cavity Mill** selecciona la opción **Feeds And Speeds**, introduce los valores que se muestran en la figura 28.

< 🗙 Feeds and Speeds 🗕	X >				
Automatic Settings	^				
Set Machining Data	1				
Surface Speed (smm)	0.0000				
Feed per Tooth	0.0000				
More	V				
Spindle Speed	^				
Spindle Speed (rpm) 1500					
More V					
Feed Rates					
Cut 250.0000	mmpm 🔽 🔒				
More	V				
Units	V				
ОК	Cancel				

Figura.- 28 Asignación de la velocidad de corte y del husillo.

Para generar las trayectorias de maquinado, selecciona el ícono Generate (Fig.29).

🔇 🔪 Cavity Mill 📒	×>		
Stepover 9	o Tool Flat	^	
Percent of Flat Diameter	50.0000		
Global Depth per Cut	1.0000		
Cut Levels	1		
Cutting Parameters			A.
Non Cutting Moves			
Feeds and Speeds	•	-	A The Albert I
Machine Control	V		
Program	v		MARCH CARE
Options	v	=	
Actions	^		
الله الم	4.2	~	*
Generate	OK Carcel		

Figura.- 29 Generación de trayectorias.

Para visualizar el maquinado selecciona el ícono **Verify.**

Selecciona **Play** en al ventana de la figura 30.

< 🗙 Tool Path Visualization 🗙 > 🔤	
Create Delete	
Show Thickness by Color	
Check for IPW Collisions	z
Check for Tool Holder Collisions	Au
Options List	
Reset	P P P P P P P P P P P P P P P P P P P
Suppress Animation	
Animation Speed	
11	
Play OK Cancel	

Figura.- 30 Verificación de maquinado.

Selecciona <**OK**> Selecciona <**OK**>

Ahora se generará el código de control numérico para el controlador Siemens, selecciona **Post Process**

ø	Operation Navigator · Program Order			
Name			Toolchang	
NC_PROGRAM				
🖻 🦞 🛅 PROGRAM				
	🔤 🦞 📢 CAVIT	Y MILL	8	
		🍢 Edit		
		🐶 Cut		
		🌇 Сору		
		坛 Delete		
		🐭 Rename		
		F Generate		
		🗟 👡 Replay		
		😻 Post Process		
		Insert	۲	
<		Object	۲)
De	pendencies	Tool Path	•	1
Details		Workpiece	•	V
8	2	to Information		
	Machine	Properties		ina

Figura.- 31

Selecciona el post procesador **Sinumerik810 de la base de datos de post procesadores** (Fig32) y da la ruta donde será creado el archivo del código de CNC.

Figura.- 32 Selección de post procesadores de código G.

Código G para fresadora.

File Edit	
4	~
NOO10 G40 G17 G94 G80 G90 G54	
N0020 T05 D05 M06 L96	_
NOO30 GOO X42.067 Y48.262 S1500 MO3	
N0040 G00 Z10.	
N0050 Z2.12	
NOO60 GO1 Z88 F250. MO8	
N0070 X58.921 Y41.91	
NOO80 GO2 X64.31 ¥39.556 I20.171 J53.52	
NOO90 GO1 X71.668 Y35.881	
N0100 Z2.12	
NO110 GOO Z10.	
N0120 X27.029 Y48.264	
N0130 Z2.12	
N0140 G01 Z88	
NO150 X35.862 Y41.913	
NO160 GO2 X39.508 Y39.23 I118.828 J165.271	
NO170 X65.319 Y31.741 I.758 J50.84	
NO180 GO1 X71.67 Y27.849	
N0190 Z2.12	
N0200 G00 210.	
NO210 X12.229 Y48.266	
N0220 22.12	
NO230 GO1 Z88	
NO240 X23.903 Y41.914	
NU250 GU2 X31.44 Y37.269 I39.17 J71.992	
NO260 X37.385 Y32.864 I114.406 J160.627	
NU27U X65.321 Y24.081 1-1.365 J44.474	
N0200 GUI A/1.0/2 119.353	Check Clearances
N0290 22.12	Check Clear ances
NO300 GUU 210.	the assembly for possib
N0220 72 12	Care assembly for possic
10320 22.12	×
5	···· · · · · · · · · · · · · · · · · ·

Figura.- 33

5.- FIN de la práctica