

DATOS GENERALES:				
CAMPO:	DISEÑO MECANICO			
CURSO:	DISEÑO Y MANUFACTURA ASISTIDOS POR COMPUTADORA			
PRACTICA No. :	0004			
NOMBRE DE LA	PRACTICA: ANÁLISIS ESTRUCTURAL			

FACULTAD DE INGENIERIA DE LA UNAM

PRACTICA 4: ANÁLISIS A BIELA

NOTA: ESTE DOCUME	ENTO CONSTA DE n HOJAS	
NOMBRE Y FIRMA		
	REVISO	ELABORO

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO LIMAC UNIGRAPHICS NX6

Descripción.

En la siguiente práctica se usarán los comandos básicos para realizar un Análisis estructural utilizando el método del elemento finito, la práctica consiste de cuatro pasos: el primero es asignar material al componente sólido; el segundo paso, es realizar un mallado del componente; el tercer paso es asignar las fuerzas; el cuarto paso es seleccionar las restricciones y el ultimo es crear la solución. Para dicho análisis se utilizará una biela (Fig.1).

Objetivo.

Mostrar al usuario el uso de las funciones básicas del módulo *Advance Simulation* en UGS-NX6, para realizar un análisis estructural.

Desarrollo.

1. Abrir un nuevo documento.

<*File*> <*Open*...> Nombre del archivo: **Biela**

[**OK**]

2. Seleccionar la aplicación "*Advance Simulation*" (Fig. 2): *<Start> <Advance Simulation>*

Figura 2. Adavance Simulation.

En las pestañas ubicadas del lado izquierdo, selecciona de Part Navigator .

Selecciona la **biela.prt** y con el botón derecho del ratón seleccionar *New FEM and Simulation* (Fig. 3).

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO LIMAC UNIGRAPHICS NX6

-ia	<pre>Simu</pre>	lation Navigator		
Nan	ne		Status	
1	1odela	Mew FEM		
		🥵 New FEM and Sin	nulation	
		8 New Assembly FE	EM	

Figura 3. New FEM and Simulation

A continuación aparece la ventana de la figura 4.

Simulation Name:	Modelado2_sim1.sim	
FEM Name:	Modelado2_fem1.fem	
Idealized Part Name:	Modelado2_fem1_i.prt	
🛃 Associate to part		
🗹 Create Idealized	Part	
Modelado2	▼ 💕	
Bodies to use	Select bodies	
	Geometry Options	
Default Language:		
Solver:	NX NASTRAN	
Analysis Type:	Structural 🔽	
Description:		

Figura 4. New FEM and Simulation

La NX6 creará 3 archivos uno con la extensión SIM, otro FEM y el tercero PRT, en cada uno de los archivos creados, la aplicación activará algunos comandos como se observará posteriormente.

Selecciona <**OK**>

< 🔪 Create	Solution 3 - X >			
Name:	Solution 1			
Solver 🛛 🕅	X NASTRAN			
Analysis Type St	tructural 🔽			
Solution Type SE	ESTATIC 101 - Single Constraint			
Automatically	Create Step or Subcase			
SESTATIC 101	1 · Single Constraint V			
OK Apply Cancel				

Figura 5. Crear solución.

<*OK*>

3. Preproceso

La secuencia para realizar FEM con NASTRAN es la siguiente:

- I. Selección del material del que estará formado el sólido.
- II. Dividir el sólido en elementos (mallado)
- III. Aplicarle las fuerzas.
- IV. Aplicarles las restricciones.

I. Selección del material.

Para la selección del material se tiene que activar el archivo con extensión FEM, En el menú superior selecciona *Window* < **Biela_fem1.fem**> (Fig. 6):

Figura 6. Biela_fem1.fem

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO LIMAC UNIGRAPHICS NX6

Material Properties

Selecciona el siguiente ícono

Asigna el material de la pieza, seleccionando Steel (Fig. 7).

Selecciona el sólido (Fig. 7), en e caso de que no asignes material, el sistema generará un error.

materia	n assignment					-,
ilters Jame Category Ype Local/R	n Material 3 – 1 eferenced Material erial Library	XI>		Metal All		
Aaterial:	s				•	
Used	Name	Category	Туре	Location		xc
1	Steel	METAL	Isotropic	Library Material [13]	<u>^</u>	
ć	Steel-Rolled	METAL	Isotropic	Library Material [14]	-	
<				· ·	2	
1		S 📷			×	
New Mat	erial				^ _	

Figura 7. Selección del material

II. Mallado

Se asignará el tipo de elemento a utilizar para el análisis, selecciona el sólido.

<*OK*>

Se desplegará la pantalla de la figura 8.

Objects to Mesh * Select Bodies (0)	-	▲ ●	^
Element Properties	CTETRA(10)	^	
Mesh Parameters	27 mm ▼ ● [^ *	
Mesh Quality Options	Mixed	^	11 12
Max Jacobian Mesh Settings	10	•	
Surface Curvature Based Size	e Variation	ncel	

Figura 8. Selección del sólido para mallar.

En la sección de Mesh Parameter" selecciona la opción Element Size (Fig. 9).

< 🔪 3D Tetrahedi	ral Mesh 🜙 🗕 🗙 🕨
Objects to Mesh	A 🛆
* Select Bodies (0)	
Element Properties	~
Туре	CTETRA(10)
Mesh Parameters	
Element Size	6.27 mm • 🗣 🕺
Attempt Free Mappe	ed Meshing
Mesh Quality Optic	ons 🔥
Midnode Method	Mixed
Max Jacobian	10
Mesh Settings	•
Surface Curvature Base	d Size Variation
	OK Apply Cancel

Figura 9. Parámetros de malla.

<*OK*>

El resultado de las acciones anteriores se muestra en la figura 10.

Figura 10. Mallado del componente

III. Aplicación de las fuerzas.

En el menú superior selecciona *Window*, y el archivo **Biela_sim1.sim**.

A continuación se activarán los comandos para aplicar las cargas y las rectricciones al modelo.

Seleccionar el ícono Force (Fig. 11).

Figura 11. Aplicación de las Fuerza.

Туре		
🏷 Magnitud	le and direction	
Name	V	\searrow
Model Obj	ects A	
* Select Of	oject (0)	
Excluded	v	
Magnitude		XC ZC
Force	Expression	
	200 N - 💽	
Direction	•	
* Specify V	ector (0)	
Reverse Dire	rtion 🛛 🕄 🗸	

Figura 12. Selección de la cara de aplicación de la fuerza.

El valor de fuerza es de 200 N.

Para especificar la dirección de la carga selecciona el ícono de dos puntos (Fig. 13)

Ahora selecciona (Fig. 13) y parecerá la ventana de opciones de la figura 14.

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO LIMAC UNIGRAPHICS NX6
< 🗙 Vector 🥥 — 🗙 >
Туре
Two Points
Through Points
* Specify From Point (0)
* Specify To Point (0)
Vector Orientation
Reverse Direction
OK Cancel
Figura 14. Vector.

Selecciona el primer punto, usando el icono y' selecciona el punto de la figura 15.

Туре	^		
📝 Two Points			
Through Points	^		
Specify From Point (1)			
* Specify To Point (0)	*		AL B
Vector Orientation	•	XQZI	
Reverse Direction	\mathbf{X}		N A
[or		Ave	. Paxist

Figura 15. Selección del primer y segundo punto

El segundo punto que se seleccionará utilizando coordenadas.

	UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO LIMAC UNIGRAPHICS NX6
Introd	uce los siguiente valores (Fig. 16)

	n 🔽	
Point Location	•	
Y Specify Cursor	ocation	
Coordinates		Alas A
Relative to WC	S Absolute	No. Contraction
х	84.62788 mm 📕	
Y	-9.45034 mm 📘	
z	O mm 💽	C
Offset	~	
Officet Option	None	19999498988

Figura 16. Ventana de coordenadas del segundo punto.

Selecciona *<OK>*, con lo que se obtiene la fuerza en la dirección indicada.

	Two Points - vector
Vector J - X >	
Туре	L 🔊
🖍 Two Points	
Through Points	
✓ Specify From Point (1)	
Y Specify To Point (1)	
Vector Orientation	
Reverse Direction	
OK Cancel	
	THAT KIK CKLARK

Figura 17. Ubicación del segundo punto.

Selecciona <**OK**>

Selecciona nuevamente *<OK*>(Fig. 18)

En la figura 18 se muestra la distribución de la carga.

Figura 18. Ubicación de fuerza.

IV. Ubicación de restricciones

Para impedir que le modelo se mueva, se aplican restricciones de movimiento y de rotación al modelo.

Selecciona el ícono de restricción (Fig. 19).

Figura 19. Fixed Constraint

Figura 20. Selección de superficie.

Seleccion*a* **<OK**>

V. Crear solución

En la ventana *Simulator Navigator* selecciona *Solution 1*, y da clic en el segundo botón del ratón, y selecciona la opción *Solve* (Fig. 21 y 22):

	-🛱 Simulation Navigator					
1	Name		Status			
	🥵 Biela_sim 1.sim			I		
1	🕀 🗹 🎒 Bi	ela_fem1.fem		1		
-	🐳 🚑 Simul	🚚 Simulation Object C				
	🖻 🗹 鱼 Load Container					
_	- 🗹 😐	Force(1)				
-0-	🖻 🗹 鱼 Constraint Conta					
_		Fixed(1)				
		 P Create Subcas P Edit Solution A Solver Parame I Rename M Delete Clone M Model Setup C Solve 	:e , :ters :heck			
	Simulation	Create Report				
Ξ	Preview	Ě Mechanical Load Summary				
Figura 21. Solve						

< 🗙 Solve 🗙 >					
Submit Solve					
Model Setup Check	A. B. B. B. B. B.				
Edit Solution Attributes					
Edit Solver Parameters					
OK Back Cancel	ZC				
Figura 22. Solve					

Selecciona *<OK> y <YES>* para iniciar la solución del análisis.

Sí todo resulta bien, la solución se muestra como en la figura 23.

Figura 23. Resultados.

Selecciona con doble clic del ratón en la opción *Results*.

De la barra de herramientas seleccionar *Play* para poder visualizar la animación (Fig. 24).

Figura 24. Animacion.

4.- Fin de la práctica.