

DATOS GENERAL	ES:	
CAMPO:	DISEÑO MEC	ANICO
CURSO:	DISEÑO Y MA	ANUFACTURA ASISTIDOS POR COMPUTADORA
PRACTICA No. :	0005	
NOMBRE DE LA I	PRACTICA:	ANÁLISIS DE MECANISMOS

PRACTICA 5: ANÁLISIS DE MECANISMOS DE CUATRO BARRAS

NOTA: ESTE DOCUME	ENTO CONSTA DE n HOJAS	
NOMBRE Y FIRMA		
	REVISO	ELABORO

Descripción

En la presente práctica se presenta el análisis cinemático de un mecanismo de cuatro barras.

Objetivo

Mostrar al usuario el uso de las opciones del módulo de Motion.

En la siguiente práctica se usara el ensamble que se muestra en la figura 1:

Figura 1 Modelo para simular movimiento.

- Abrir el archivo ya existente <File> <Open...> Nombre del archivo: Motion1 [OK]
- 2. Iniciación de la simulación. <Start> <Motion Simulation...>

Figura 2

Da clic con el botón derecho en la ventana de **Motion Navigator** en **Motion 1.** Y seleciona **New Simulation**.

En la ventana de la figura 3 selecciona el tipo de análisis Dynamics.

< 🔪 Environme	nt X >
Analysis Kinematics Oynamics	
Component-bas	ed Simulation
	OK Cancel

Figura 3

[**OK**] a continuación da clic en el botón [**Cance**]

Se despliega la ventana Motion Navigator:

	<	>	
	ø	Motion Navigator	
2_	Na	me	Status
Π.	å.	motion1	
1	0.	motion_1	1

Y se activan los comandos de la figura 5.

Figura 5

3. Definir el elemento que trabajará como tierra en el mecanismo. Selecciona el

Se despliega la ventana de la figura 6 donde se introduce el nombre de la barra que será un cuerpo rígido.

Link Objects	^
* Select Object (0)	+
Up One Level	
Mass Properties	^
Automatic User Defined	Non
Mass	V
nertia	V
nitial Translation Velocity	V
nitial Rotation Velocity	V
Settings	^
Fix the Link Name	

Figura 6

Ahora selecciona una de las barras del ensamble de la figura 7.

Figura 7

[**OK**]

4. A continuación se definen las uniones del mecanismo, seleccionar el siguiente icono

Joint

, se despliega la ventana de la figura 8.

Figura 8

Selecciona en el ensamble la unión de rotación que se muestra en la figura, la cual será la barra motriz.

Se activa la ventana de la figura 10 y señala la estaña **Driver Type**, introduce el valor **Initial velocity=10.00**

< 🔪 Joint 👃 🗕 🗙 🗲	i.	1
Definition Friction Driver Type	^	
Driver Type		
Constant		
Initial Displacement 0.0000		
Initial Velocity 10.00000		
Acceleration 0.0000		

[apply]

El sistema mostrará la definición del par de revolución, como se muestra en la figura 11.

Figura 11

Ahora selecciona la siguiente unión como se muestra en la figura 12.

Figura 12

[apply]

Selecciona la siguiente unión del ensamble:

Figura 13

[apply]

Selecciona la siguiente unión del ensamble.

Figura 14

[apply]

[Cancel]

La definición de la barra fija y las uniones de revolución se muestran en la figura 15.

Figura 15

5. Definición de la solución, selecciona de la ventana Motion Navigator el análisis motion _1 y da clic con el botón derecho, con lo cual se despliega la ventana de la figura 16 y selecciona New Solution.

Figura 16

En la ventana **Solution** da [**OK**].

Solution Option		^	
Solution Type	Normal Run		
Analysis Type	Kinematics\Dyna	mi 🔽	
Time	1.0	0000	
Steps		50	
Solve with OK			
Gravity		^	
🗸 Specify Directi	on (1)	2-	
Reverse Direction		1	
Gravitational Cons	tant 9806.	650	
Settings		•	
Name	Solution_1		
Coluce Parameter	<.	V	

Figura 17

Ahora selecciona Solution_1 y con el botón derecho del ratón selecciona Solve.

Figura 18

6. Presentación de la animación del mecanismo. Selecciona **play** en la ventana de la figura 20.

Figura 19

7. FIN de la práctica.