

DATOS GENERAL	DATOS GENERALES:			
CAMPO:	DISEÑO MECANICO			
CURSO:	DISEÑO Y MANUFACTURA ASISTIDOS POR COMPUTADORA			
PRACTICA No. :	0004			
NOMBRE DE LA	PRACTICA: ANÁLISIS DE ELEMENTO FINITO			

PRACTICA 4: ANÁLISIS DEL REMATE DE ESTUFA

NOTA: ESTE DOCUMENTO CONSTA DE n HOJAS				
NOMBRE Y FIRMA				
	REVISO	ELABORO		

Descripción

En la presente práctica se presenta el análisis del remate para estufa, utilizando el método de elemento finito. Utilizando como solucionador el módulo de Nastran incluido en NX5.

Objetivo

Mostrar al usuario el uso de las opciones del módulo de elemento finito.

1. En la siguiente práctica se usará el modelo de la figura 1.

Figura 1 Creación de un modelo.

Abrir un archivo ya existente

<File> <Open...> Nombre del archivo: Practica1 [OK]

2. Inicio del módulo de análisis. <Start> <Advanced Simulation...>

Figura 2

Dentro de la ventana de **Simulaton Navigator**, da clic en el botón del lado derecho del ratón. Y selecciona la opción **New FEM and Simulation** figura 3.

Simulat	ion Navigator		
Name	ica I and art New FEM New FEM and Simul	Status	Envir
			,

El sistema despliega la ventada de la figura 4, donde es posible definir el tipo de análisis a realizar, para el caso que se trata ahora la opción es **NX NASTRAN** y el tipo **Structural**.

🎐 New FEM and	Simulation 🛛 🔀
Simulation Name:	practica 1 n×4_sim1.sim
FEM Name:	practica 1 n×4_fem1.fem
Idealized Part Name:	practica 1 nx4_fem1_i.prt
🗸 Associate to part	
🗹 Create Idealia	zed Part
practica 1 n×4	💌 🔛
Bodies to use	
 Use all bodie 	s 🔘 Select bodies
Geor	netry Options
Default Language:	
Solver:	NX NASTRAN 🛛 👻
Analysis Type:	5tructural 🗸 🗸
Description:	
·	
	OK Cancel

Figura 4

Nota que se general tres tipos de archivos con las siguientes extensiones: **sim, fem** y **prt**.

[**OK**]

A continuación aparece la ventana que determina el tipo de solución **SESTATIC 1001**.

Create Solution		
Name: Solution 1		
Solver	NX NASTRAN 🔽	
Analysis Type	Structural 🛛 🗸	
Solution Type SESTAT	TIC 101 - Single Constraint 🔽	
Automatically Creat	te Step or Subcase	
	▼]	
OK Apply Cancel		

Figura 5

[**OK**]

3. Ahora se va a asignar material al modelo, selecciona en Window la parte Practica 1 fem1.fem.

Figura 6

¢ Selecciona el siguiente icono Material Properties , aparece la ventana que se muestra en la figura 7, no existen materiales seleccionado, sin embargo existe una librería de donde se Ø

ſ

selecciona el material, da clic en el siguiente icono

		*			
Material /	Category				
Materials Inherited	Part				
ategory					
ategory brary Reference Isotropic Orthotropic A Mass Density	nisotropic Fluid		kg/mm^3	~	^
ategory brary Reference Isotropic Orthotropic A Mass Density Reference Temperature	nisotropic Fluid		kg/mm^3	~	
ategory brary Reference Isotropic Orthotropic A Mass Density Reference Temperature Young's Modulus	nisotropic Fluid		kg/mm^3 C N/mm^2(MPa)	× ×	•
ategory brary Reference Isotropic Orthotropic A Mass Density Reference Temperature Young's Modulus Poisson's Rabio	nisotropic Fluid		kg/mm^3 C N/mm^2(MPa)	V	< III
ategory brary Reference Isotropit Orthotropic A Mass Density Reference Temperature Young's Modulus Poisson's Ratio Shear Modulus	nisotropic Fluid		kg/mm^3 C 	>	
ategory brary Reference Isotropic Orthotropic A Mass Density Reference Temperature Young's Modulus Poisson's Ratio Shear Modulus Yield Strength	nisotropic Fluid		kg/mm^3 C N/mm^2(MPa) N/mm^2(MPa)	>	•
ategory brary Reference Isotropic Orthotropic A Mass Density Reference Temperature Young's Modulus Poisson's Ratio Shear Modulus Vield Strength Ultimate Tensile Strength	nisotropic Fluid		kg/mm^3 C N/mm^2(MPa) N/mm^2(MPa) N/mm^2(MPa)	>	
ategory brary Reference Isotropic Orthotropic A Mass Density Reference Temperature Young's Modulus Poisson's Ratio Shear Modulus Vield Strength Ultimate Tensile Strength	nisotropic Fluid		kg/mm^3 C N/mm^2(MPa) N/mm^2(MPa) N/mm^2(MPa)		

Se despliega la ventana Search Criteria, da clic en el botón Count Matches y OK.

🎐 Search Criteria 🛛 🛛 🔀				
Materials				
Library Reference				
Name				
Category	Metals 🔽			
Туре	Isotropic 🔽			
Result Info	Clear			
Count Matches -				
OK Back	Cancel			

Figura 8

Como resultado se despliega la tabla de la figura 9, en el caso de que la pieza sea de ACERO, selecciona la opción 13 da clic en **OK.**

🎐 Search Result			×
	Materials		
Lib Ref.	Name	Category	
2	Aluminum_2014	METAL	~
3	Aluminum_6061	METAL	
4	Brass	METAL	
5	Bronze	METAL	
8	Iron_Malleable	METAL	
9	Iron_Nodular	METAL	
10	Iron_40	METAL	
11	Iron_60	METAL	
13	Steel	METAL	
14	Steel-Rolled	METAL	
16	S/Steel_PH15-5	METAL	
17	AISI_410_SS	METAL	
18	AISI_310_SS	METAL	
20	Titanium_Alloy	METAL	
21	Tungsten	METAL	
22	Waspaloy	METAL	
37	Aluminum_5086	METAL	
38	Conner C10100	METAI	

Figura 9

El sistema regresa a la ventana **Materials**, selecciona primero el material de la tabla como se muestra en la figura 10,

< 🔪 Materials 🗙 >				
Category		*		
Material 🔺	Category			
STEEL	METAL			
Materials Inherited	Part			
Name	<u> </u>	STEEL		
Category		METAL		
Library Reference		13		
Isotropic Orthotropic Anis	otropic Fluid	-		
Basic Structural				▲ <u>▲</u>
Mass Density	7.829e-0	kg/mm	^3 🔽	
Filter				Any 🔽
	× 🖻 🌳	1]	
	ОК	Apply	Back	Cancel

Figura 10

a continuación selecciona la pieza a analizar.

Figura 11

[**OK**]

3D

4. A continuación se generará la malla utilizando tetraedros, seleccionar el icono

Tetrahe..., aparece la ventana de la figura 12.

	FACULTAD DE INGENIERIA LIMAC UNIGRAPHICS NX5
🎐 3D Mesh 🛛 🔀	
Туре	
Equivalent Elements	
Overall Element Size 25,4000	
✓ Transition Edge Seeding	
Preview	
Midnodes Mixed 🗸	
Maximum Jacobian 10.0000	TANKAN MANAGAMAN IN
Mesh Options	
Surface Mesh Size Variation 50	
Minimum Maximum	
Volume Mesh Size Variation 50	

Selecciona el modelo y selecciona el siguiente icono y da clic en el botón OK.

El sistema malla (Figura 13) al modelo de la considerando el tamaño del elemento seleccionado anteriormente.

5. El siguiente paso es colocar las condiciones de carga a las que estará sometida la pieza. De la opción Window seleccionar la siguiente el archivo Practica 1 nx4_sim1.sim, figura 14.

Figura 14

Seleccionar el icono

y selecciona el icono Force

Seleccionar la cara donde se aplicará una fuerza distribuida (Figura 15) y teclea el valor en la opción Force=1500.

Figura 15

[**OK**]

En la figura 16 se muestra la fuerza distribuida aplicada.

Figura 16

6. Ahora es necesario colar las restricciones de movimiento y de rotación en la pieza,

para realizarlo se selecciona el siguiente icono

Constraint Type

Y selecciona la opción **Fixed Constrain Fixed Constraint**, y coloca las restricciones en todas las caras del contorno exterior que se muestran en la figura 17,

Figura 17

da clic en OK.

Finalmente el modelo con las consideraciones de fuerza y restricción se muestra en la figura 18.

Figura 18

8. Dar doble clic a Results

Y se muestran los resultados con una escala de colores que muestran la distribución de los esfuerzos y/o deformaciones.

Figura 19

9. Finalmente se realizará la animación del comportamiento de la pieza analizada. Como se muestra en la figura 20 selecciona la imagen de los esfuerzos o deformaciones, que quieres animar y da clic en el segundo botón del ratón.

De la ventana que se despliega selecciona Animate

A continuación en al ventana Animation da clic en el botón Play.

10. FIN de la práctica.

