

ANSYS PRÁCTICA 2: ANÁLISIS ESTATICO DE ESFUERZOS

DATOS GENERAL	.ES:
CAMPO:	DISEÑO MECANICO
CURSO:	DISEÑO Y MANUFACTURA ASISTIDOS POR COMPUTADORA
PRACTICA No. :	0002
NOMBRE DE LA	PRACTICA: ANÁLISIS ESTATICO DE ESFUERZOS

FACULTAD DE INGENIERIA

PRACTICA 2: ANÁLISIS ESTATICO DE ESFUERZOS

NOTA: ESTE DOCUME	ENTO CONSTA DE n HOJAS	
NOMBRE Y FIRMA		
	M.I. ALVARO AYALA RUIZ	ING. JOSE MANUEL VAZQUEZ CHAVEZ
	REVISO	ELABORO

ANSYS PRÁCTICA 2: ANÁLISIS ESTATICO DE ESFUERZOS

INDICE:

1.	INTRODUCCION	3
2.	MODELADO	3
3.	TIPO DE ELEMENTO	4
4.	PROPIEDADES GEOMÉTRICAS	5
5.	PROPIEDADES DE LOS MATERIALES	6
6.	APLICACIÓN DE LA MALLA AL MODELO	7
7.	TIPO DE ANÁLISIS	7
8.	APLICACIÓN DE CARGAS Y CONDICIONES DE FRONTERA	7
9.	SOLUCION DEL SISTEMA	9

ANSYS PRÁCTICA 2: ANÁLISIS ESTATICO DE ESFUERZOS

1. INTRODUCCION.

Esta práctica se tiene como objetivo el aprender a utilizar el programa ANSYS 7.0, para lograr esto se realizará un ejercicio simple de viga en cantiliver.

Descripción del problema

El elemento estructura esta construido con tubo de aluminio, con un diámetro exterior de 25 mm y un grosor de 2mm. La versión simplificada que se utilizara para este ejercicio es el de una viga en voladizo, como se muestra en la siguiente figura.

2. MODELADO

Para iniciar se da nombre al problema

Utility Menu > File > Change Title

Se van ha crear una serie de puntos, los cuales luego van ha ser unidos por medio de líneas.

Creación de los puntos Keypoints, del Menú Principal de ANSYS seleccionar:

Preprocessor > Modeling > Create > Keypoints > In Active CS

Definir dos puntos para la estructura simplificada como se muestra en la siguiente tabla

ANSYS PRÁCTICA 2: ANÁLISIS ESTATICO DE ESFUERZOS

punto	Coordenada		
	Х	у	Z
1	0	0	0
2	500	0	0

Los dos puntos deben conectarse para formar una barra usando una línea recta.

Preprocessor > Modeling> Create > Lines > Lines > Straight Line.

Da clic sobre el keypoint 1 (se debe marcar con un pequeño cuadro Amarillo), ahora da clic sobre el keypoint 2 y debe aparecer una línea permanente de color Azul.

Una vez que lo hayas hecho, da clic en OK sobre la ventana Create Straight Line

3. TIPO DE ELEMENTO

Es necesario crear elementos sobre esta línea. Del menú Preprocessor, selecciona:

Element Type> Add/Edit/Delete

Aparecerá el dialogo Element Types, selecciona el botón Add y la siguiente ventana debe aparecer

Library of Element Types		X
Library of Element Types	Structural Mess Lrik Beam Pipe Rigid Solid Solid Shell Hyperelestic	Elest straight16 tes 17 ebow 18 Pest straight20 ebow 60 Immesed 99 Elest straight16
Element type reference sumber	1Cencel	Holp

Para este ejemplo, utilizaremos como elemento de análisis un tubo recto elástico en 3D. Por lo que se selecciona el elemento PIPE16 y Elast. Straight 16, da clic en el botón OK.

Regresaras al dialogo Element Types, donde seccionaras el botón Options y debe aparecer la siguiente ventana

UNIVERSIDAD NACIONAL A LIMA ANSYS PRÁCTICA 2: ANÁLISIS	AUTONOMA DE MEXICO C ESTATICO DE ESFUERZOS
PIPE16 element type options	X
Options for PIPE16, Element Type Ref. No. 1	
Temperatures represent K1	Thru-wall gradint
Stress int factors (SIF) from K2	Real con SIF I&J
Element id in output K4	Straight pipe
Use of PX, PY, PZ pressures K5	Use normal comp
Member force + moment output K6	Include output
Gyroscopic damping matrix K7	No matrix
OK Cancel	Неір

Selecciona el campo K6 y selecciona Include Output, da clic sobre OK. Esto permite contar con información de momentos y fuerzas en los resultados.

Finalmente da clic sobre Close en el cuadro de diálogo Element Types.

4. PROPIEDADES GEOMÉTRICAS

Ahora se especificarán las propiedades geométricas para los elementos ya creados.

En el menú Preprocessor, selecciona

Real Constants > Add/Edit/Delete

Da clic sobre Add y selecciona Type 1 PIPE16, da clic sobre OK.

Introduce las siguientes propiedades geométricas:

OD: 25 TKWALL: 2

ANSYS PRÁCTICA 2: ANÁLISIS ESTATICO DE ESFUERZOS

Real Constant Set Number 1, for PIPE16	×
Element Type Reference No. 1	
Real Constant Set No.	1
Outside diameter OD	25
Wall thickness TKWALL	2
Stress intensity fact at I SIFI	
Stress intensity fact at J SIFJ	ii
Flexbility factor FLEX	
Internal fluid density DENSFL	
Ext insulation density DENSIN	<u> </u>
Insulation thickness TKIN	
Corrosion thk allowance TKCORR	
Insulation surface area AREAIN	<u> </u>
Pipe wall mass MWALL	
Axial pipe stiffness STIFF	
Rotordynamic spin SPIN	
OK Apply Cancel	Help

Esto define un tubo con diámetro externo de 25 mm y un grueso de pared de 2 mm, selecciona OK.

Regresas el diálogo Real Constants y aparece la opción Set 1 en el cuadro de diálogo, da Clic sobre Close.

5. PROPIEDADES DE LOS MATERIALES

En el menú Preprocessor selecciona

Material Props > Material Models

Aparece el diálogo Define Material Model selecciona

Structural > Linear > Elastic > Isotropic

Da doble clic sobre el **Isotropic** e introduce las propiedades del Aluminio y selecciona OK.

EX 70000 PRXY 0.33

ANSYS PRÁCTICA 2: ANÁLISIS ESTATICO DE ESFUERZOS

Cierra la ventana 'Define Material Model Behavior'.

6. APLICACIÓN DE LA MALLA AL MODELO

Define el tamaño del elemento:

En el menú Preprocessor selecciona:

Meshing > Size Cntrls > ManualSize > Lines > All Lines

En el campo SIZE, introduce la longitud deseada. Para este caso da una longitud de 20 mm y da clic en OK. De forma alternativa podemos introducir el número de divisiones, que en este caso seria de 25.

Realiza el mallado

En el menú **Preprocessor** selecciona:

Meshing > Mesh > Lines

da clic en Pick All en la ventana Mesh Lines.

Guarda tu trabajo

Utility Menu > File > Save as....

7. TIPO DE ANÁLISIS

Del menú Solution, selecciona

Analysis Type > New Analysis.

Asegurate que Static este seleccionada y da clic en OK.

8. APLICACIÓN DE CARGAS Y CONDICIONES DE FRONTERA

Aplicación de las CF

En el menú Solution selecciona

ANSYS PRÁCTICA 2: ANÁLISIS ESTATICO DE ESFUERZOS

Define Loads > Apply > Structural > Displacement > On Keypoints

Selecciona el Keypoint 1 con el ratón y da clic en OK, aparece la ventana Apply U,ROT on KPs.

Selecciona All DOF e introduce el valor de 0 en el campo Value y de clic en OK.

Aplicación de las cargas

Como se muestra en la figura 1, hay una carga vertical hacia abajo de 100N en el extremo de la barra.

En el menú Structural selecciona

Force/Moment > on Keypoints.

Selecciona el segundo punto y da clic en OK en la ventana Apply F/M.

Selecciona FY de la opción Direction of force/mom.

Introduce el valor de -100 en la caja de Force/moment value y da clic en OK.

La fuerza debe estar indicada con una flecha roja e indicando hacia abajo.

La aplicación de las cargas y las restricciones debe aparecer como se muestra a continuación.

ANSYS PRÁCTICA 2: ANÁLISIS ESTATICO DE ESFUERZOS

9. SOLUCION DEL SISTEMA

Solution > Solve > Current LS

Deformacion

Selecciona General Postproc.

Plot Results > Deformed Shape.

Selecciona Def + undef edge y da clic en OK.

1 DISPLACEMENT	ANSYS
57139-11 5105 -1	15:51:37
THE:1	
1205 = 5.109	
ll í.	
<u> </u>	
Simple Space Frame	
o apre opace a rane	

Deflexión

Del menú General Postproc selecciona

En el diálogo Contour Nodal Solucion Data, selecciona DOF solution y USUM, y da clic en OK.

ANSYS PRÁCTICA 2: ANÁLISIS ESTATICO DE ESFUERZOS

La escala de colores con la que se muestran los resultados se puede ajustar, lo cual se puede conseguir seleccionando en el menú Plot Controls

Style > Contours > Uniform Contours

La deflexión también se puede obtener como una lista, como se muestra abajo.

General Postproc > List Results > Nodal Solution ...

Selecciona DOF Solution y ALL DOFs de la lista de la ventana List Nodal Solution y da clic en OK.

PINSUL Command			E Contraction of the second
Die			
De FRINT DOF HODEL SOLUTION F ****** FOSTI NOBEL DECREE O LOAD SIEF* 1 SUBSIEF* TIME* 1.0000 LOAD THE FOLLOWING DEGREE OF FR HODE UX UT 1 8.0000 20.0000 10.000	ER NODE P FREEDOM LISTING CASE ¹ 0 EEDOM RESULIS ARE 0 0.0000 5 0 0.0000	IN GLOSAL COOR BOTE 9.99000 9 9.9000 9	19 I NATES 10 TV BOTZ 1. 6800 - 0. 185472-01
3 8,0000 -0.1597 4 8,0000 -0.5787 5 8,0000 -0.1127 6 8,0000 -0.1127 7 8,0000 -0.3114 9 8,0000 -0.4377 9 8,0000 -0.4377 9 8,0000 -0.4377 10 8,0000 -0.5665 10 8,0000 -1.367 12 8,0000 -1.367 15 8,0000 -1.307 15 8,0000 -1.507 15 8,0000 -1.507 15 8,0000 -	15-01.0 0.30300 66-01.0 0.30300 6 0.30300 6 0.30300 6 0.30300 1 0.30300 1 0.30300 1 0.30300 4 0.30300 6 0.30300 6 0.30300 6 0.30300 1 0.30300 4 0.30300 6 0.30300 6 0.30300 6 0.30300	0.0000 0 0.00000 0 0.00000 0	1,00000 -0.1,45-41E-02 0,0000 -0.54104E-02 0,0000 -0.54104E-02 0,0000 -0.5402E-02 0,0000 -0.5402E-02 0,0000 -0.5470E-02 0,0000 -0.79707E-02 0,0000 -0.197707E-02 0,0000 -0.197707E-02 0,0000 -0.197707E-02 0,0000 -0.197707E-01 0,0000 -0.12770E-01 0,0000 -0.12522E-01 0,0000 -0.12522E-01 0,0000 -0.12522E-01
16 0.8000 -2.300 17 0.8000 -2.580 18 0.0000 -3.800 19 0.0000 -3.300 19 0.0000 -3.572 21 0.0000 -4.017 22 0.0000 -4.017 23 0.0000 -4.073 24 0.0000 -5.097 25 0.0000 -5.097 25 0.0000 -5.357	0 0 30380 5 0 30380 7 0 30380 7 0 30380 7 0 30380 0 0 30380 0 0 30380 0 0 30380 0 0 30380 0 0 30380 1 0 30380 7 0 30380	0.0000 0 0.0000 0 0.00000 0 0.0000 0 0.00000000	1.00000 -0.14754E-01 1.0000 -0.15579E-01 1.0000 -0.16143E-01 1.0000 -0.16143E-01 1.0000 -0.17979E-01 1.0000 -0.17979E-01 1.0000 -0.129795E-01 1.0000 -0.129795E-01 1.0000 -0.129495E-01 1.0000 -0.129495E-01 0.0000 -0.129496E-01 0.0000 -0.129496E-01 0.0000 -0.18428E-01 0.0000 -0.18428E-01 0.0000 -0.18438E-01 0.0000 -0.184317E-01
NAXIMUM ABSOLUTE VALUES NODE 0 2 VALUE 0.0000 -6.2005	8.000	a.eeeo a.	.8888 -0.18547E-01

Esfuerzos

Del menú General Postprocessor selecciona

Element Table > Define Table...

y da Clic en Add.

En la caja Item, Comp, selecciona Stress y von Mises SEQV

Annual of the former and		
AMPRINJ EFF BU For EQV strain	0	
ETABLE] Define Additional Element Table Items		
ab User label for item		
tem,Comp. Results data item	DOF solution	A 2rd principal S2 3rd principal S3
	Nodal force data	von Mises SEQV
	Energy Error estimation	PlasEQ/30s 3EPL StressRatin SRAT
	Geometry Sirain-elastic	von Mses SEQV
(For "By sequence num", enter sequence	e	•
no. in Selection box. See Table 4.xx-3		
in Elements Manual for seq. numbers.)		

Da clic en OK y cierra la ventana Element Table Data.

Despliega los esfuerzos seleccionando el menú General Postprocessor y

Plot results > Contour Plot > Elem Table.

La siguiente ventana debe aparecer, selecciona SEQV y da clic en OK.

[PLETAB] Contour Element 1	able Data			
Itlab Item to be plotted		SEQV		
Avglab Average at common	nodes?	No -	do not avg	•
ок	Apply	Cancel	Help	

Lista de Esfuerzos

Del menú General Postprocessor selecciona

List Results >Element Solucion > Elem Date Table

En la ventana List Element Table Data, selecciona SEQV y da clic a OK.

Diagrama de Momento de Flexión

Para obtener los datos de momentos de flexión selecciona

General Postproc > Element Table > Define Table

selecciona Add

Item, Comp. Results data item	Strain-elasti;	SNISC,
	Strain-thermal Strain-plactic	NMISC, C
	Strain-creep Strain-other	LEPEL, LEPTH,
	Contact B Optimization —	ILEPPL, 💌
	Dy sequence turn	SMISC, 6 D
(For "By sequence num", enter sequence		
no. in Selection box. See Table 4.xx-3		
in Elements Manual for seq. numbers.)		

En la ventana Define Additioanal Element Table, selecciona

la caja User label for item (A), y teclea Momentos-I,
en la caja Item (B) selecciona By sequencie num,
en la caja C selecciona <mark>SMISC</mark> y
en la caja D teclea ,6.

Finalmente da clic en OK.

Lo anterior guarda los datos de momentos de flexión para el lado izquierdo de la viga, ahora se hará para el lado derecho de la vigas.

General Postproc > Element Table > Define Table

selecciona Add

En la ventana Define Additioanal Element Table, selecciona

la caja User label for item (A), y teclea Momentos-D, en la caja Item (B) selecciona By sequencie num, en la caja C selecciona SMISC y en la caja D teclea ,12.

Finalmente da clic en OK.

Da clic en close y cierra el menú Element Table.

Selecccione

Plot Results > Contour Plot > Line Elem Res

ANSYS PRÁCTICA 2: ANÁLISIS ESTATICO DE ESFUERZOS

En la ventana Plot Line-Element Results, selccione MOMENT'-I en LabI, y MOMENT'-D en LabJ, da click OK.

APlot Line-Element Results	×
[FLL5] Plot Line-Element Result	
LabI Elem table item at node I	
LabJ Elem table item at node J	JNOMENT T
Fact Optional scale factor	1
KUND Items to be plotted	
	G Def shape only
	C Def + undeformed
	C Def + undef edge
OK Apply	Cancel Help

ANSYS Graphics	PLLS,IMOMENT, JMOMENT, 1,0	
1 LINE STRESS STEP-1 SUB =1 TRES=1 INCEDIT RECENT HIR50100 HIRM-1 MAX =.455E-19 HIRM=25 Y		REAL CARE
-50000 -	-38839 -27718 -18667 -44444 -10030 -22222	-11111 0